Algebra 1 intenzív


Az előadás
Az egyes előadások tartalma (tematika)
A vizsga
Ajánlott irodalom
A gyakorlat
Feladatsorok

Az előadás (Kedd 8:15-9:55, 10 perc szünettel)


Az algebra kurzusok során először klasszikus, majd lineáris, végül absztrakt algebrát tanulunk. Az oktatás célja egyfajta gondolkodásmód és az algebrai módszerek bemutatása, a feladatmegoldási készség fejlesztése. Emelt szinten feltételezzük, hogy ez részben már megtörtént középiskolában, a Középiskolai Matematikai Lapok és középiskolás versenyfeladatok segítségével.

A modern matematikában a nehezebb problémák megoldásához sokszor egész elméleteket kell felépíteni. Eközben új fogalmak is bevezetésre kerülnek, amelyek egymásra épülnek. Ezért már egyetlen előadás elmulasztása is azt eredményezheti, hogy a következő héten egy hangot sem értünk. Az előadásokon igyekszünk azt is elmondani, hogy mit miért (és miért épp így) csinálunk, mi az egyes fogalmak, tételek háttere, emberi tartalma, hogyan lehet a gondolatokra rájönni. Ez a vizsgán nagyon hasznos lehet, ezért az előadások látogatását javasolom. Ha valaki az előadáson nem tud részt venni, a gyakorlatra akkor is meg kell érteni az elhangzott fogalmakat és tételeket.

Az egyes előadások tartalma

Ennek a félévnek az anyagát lényegében lefedi a két könyvből összesen az első három-három fejezet. Az alábbi tematika egyben vizsgatematika is. Az NB jelentése: a bizonyítás nem szerepelt, nem kell tudni a vizsgán.

1. előadás: szeptember 8. Bevezetés. A harmadfokú egyenlet kérdése, a komplex számok szükségessége, bevezetésük \(a+bi\) alakú formális kifejezésként. Valós és képzetes rész, egyértelműség. Összeadás, kivonás, szorzás. Asszociativitás, kommutativitás, disztributivitás, testaxiómák. Minden nem nulla komplex számmal lehet osztani. Konjugált, abszolút érték, kapcsolatuk, tulajdonságaik. Nullosztómentesség.

A Gauss-féle számsík. A komplex számok összeadása a vektorösszeadásnak felel meg. Komplex szám hossza, szöge és trigonometrikus alakja. Szorzásnál a szögek összeadódnak, a hosszak összeszorzódnak. A háromszög-egyenlőtlenség. Elemi geometriai alkalmazások, mackósajtos feladat.

2. előadás: szeptember 15. Komplex számok hatványozása. Gyökvonás komplex számból. A gyökök száma és elhelyezkedése. Az egységgyökök fogalma, száma, képlete. Nem nulla komplex szám rendje, mint a különböző hatványainak a száma, primitív egységgyökök.

Test feletti polinomok. Gyűrű definíciója. Polinomok egyenlősége, együtthatói, konstans tagja, foka, főegyütthatója, normált polinom, a nullapolinom. Polinomok összege, különbsége, szorzata, a szorzat együtthatói. Az összeg és a szorzat foka, nullosztómentesség. A komplex számok bevezetése rendezett párokkal, a polinomok sorozatos bevezetése.

3. előadás: szeptember 22. Behelyettesítés polinomba. Gyök, a gyöktényező kiemelhetősége. A Horner elrendezés, és szerepe a gyöktényező kiemelésénél. A különböző gyökökhöz tartozó gyöktényezők egyszerre is kiemelhetők. A gyökök száma legfeljebb a polinom foka. A polinomok azonossági tétele, ez érvényes végtelen integritási tartomány felett, de véges felett nem. A polinom és a polinomfüggvény fogalma közti különbség. A polinom formális deriváltja, \(k\)-szoros gyök fogalma, kapcsolatuk.

Az algebra alaptétele (NB). A gyöktényezős alak. Az \(x^n-1\) polinom gyöktényezős alakja (gyakorlaton). Polinomok maradékos osztása, euklideszi algoritmus, a legnagyobb közös osztó felírása lineáris kombinációként (gyakorlaton).

4. előadás: szeptember 29. A harmad- és negyedfokú egyenlet megoldási módszere, Cardano képlet. Casus irreduciblis, diszkusszió. A minimum 5-ödfokú egyenletre nincs gyökképlet (NB).

Lineáris egyenletrendszer megoldása Gauss-eliminációval. Ha egyértelmű a megoldás, akkor az egyenletek száma legalább annyi, mint az ismeretlenek száma. Következmény: homogén egyenletrendszernek van nemtriviális megoldása, ha kevesebb egyenlet van, mint ismeretlen.

Az \(n\) magas (komplex) oszlopvektorok "tere", összeadás, skalárral szorzás. A mátrix általános fogalma, műveletek: összeadás, szorzás, skalárral szorzás, transzponált, műveleti tulajdonságok. Mátrix és vektor szorzata. Motiváció: lineáris egyenletrendszer mátrixos alakja. Mátrixgyűrű test (illetve gyűrű) felett.

5. előadás: október 6. Hatványozás gyűrűben, azonosságok, gyűrűelem egész számszorosa. Nullosztó, minden test nullosztómentes. Művelettartó leképezés, lineáris leképezés. Gyűrűhomomorfizmus és izomorfizmus. A \(\mathbb{Z}/n\mathbb{Z}\) gyűrű definíciója, ez pontosan akkor nullosztómentes ha test, és ez akkor igaz, ha \(n\) prímszám. Véges nullosztómentes gyűrű ferdetest. Ha egy kommutatív gyűrűben minden elem \(p\)-szerese nulla, akkor tagonként lehet \(p\)-edik hatványra emelni (\(p\) prím). Következmény: a kis Fermat-tétel.

Csoport definíciója, példák: gyűrű additív és multiplikatív csoportja. Homomorfizmus, izomorfizmus, részcsoport. Elem rendje, részcsoport rendje, Lagrange-tétel.

6. előadás: október 13. Permutáció, inverziók, előjel. Az előjelek szorzástétele. A páros permutációk száma, a szimmetrikus és az alternáló csoport. Ciklusfelbontás (gyakorlaton). Előjeles mérték, a paralelepipedon térfogata. A determináns definíciójának egyértelműsége. A determináns alaptulajdonságai, kiszámítása Gauss-eliminációval.

A transzponált mátrix determinánsa. Következmény: az oszlopokra teljesülő tulajdonságok a sorokra is érvényesek. A determinánsok szorzástétele. Előjeles aldetermináns, a kifejtési tétel.

október 20. 8:00-10:00, Északi tömb 1.71 (Pócza Jenő terem) 1. évfolyamzárthelyi az 1-5. előadások anyagából


7. előadás: november 3. A ferde kifejtési tétel, az inverz mátrix képlete. Egy mátrix akkor és csak akkor invertálható, ha determinánsa nem nulla. Következmény: négyzetes mátrixokra \(MN=E\) akkor és csak akkor, ha \(NM=E\). A Cramer-szabály és megfordítása. Vandermonde-determináns. Az inverz mátrix kiszámítása Gauss-eliminációval. Mátrix rangja (vezéregyesek száma Gauss-elimináció után), ez nem függ a Gauss-elimináció módjától. Összefüggés négyzetes mátrix rangja és determinánsa között.

Laplace-kifejtés.

8. előadás: november 10. Cauchy-Binet formulák, számozott fák száma.

A Lagrange-interpoláció. A gyökök és együtthatók közötti összefüggések (részben gyakorlaton). Egységelemes, kommutatív gyűrű feletti polinomgyűrű, a többhatározatlanú polinom rekurzív definíciója. Fok, homogén polinom, lexikografikus rendezés.

9. előadás: november 17. A szimmetrikus polinomok alaptétele, egyértelműség. Hatványösszegek, Newton-Girard-formulák.

Számelméleti alapfogalmak általános gyűrűben: oszthatóság, asszociált, egység, irreducibilis és prím elem, kitüntetett közös osztó és többszörös. Alaptételes gyűrű, kanonikus alak. A kitüntetett közös osztó kiemelési tulajdonsága, az alaptétel egyértelműségi állítása.

Az irreducibilitás jellemzése test fölötti polinomokra. Összefüggés gyök létezése és az irreducibilitás között test fölötti első, másod-, harmad- és magasabb fokú polinomok esetében. A racionális gyökteszt. Egy valós együtthatós polinomnak minden komplex szám és a konjugáltja ugyanannyiszoros gyöke. Következmény: páratlan fokú valós együtthatós polinomnak van valós gyöke. Az irreducibilis polinomok \(\mathbb{C}\) fölött pontosan az elsőfokúak. \(\mathbb{R}\) fölött egy polinom akkor és csak akkor irreducibilis, ha elsőfokú, vagy ha másodfokú, de nincs valós gyöke. Az egész együtthatós polinomok számelmélete.

10. előadás: november 24. Primitív polinom, Gauss-lemma, a \(\mathbb{Z}[x]\) irreducibiliseinek leírása. Racionális együtthatós polinomok Newton-poligonja, ennek segítségével irreducibilitási kritérium. Speciális eset: A Schönemann-Eisenstein kritérium. Következmény: racionális fölött akárhányad fokú irreducibilis polinom létezik. A körosztási polinom definíciója és rekurzív kiszámítása.

11. előadás: december 1. A körosztási polinom egész együtthatós és irreducibilis. Alkalmazás: Dirichlet tételének \(nk+1\) esete.

A rezultáns. A diszkrimináns. Valós együtthatók esetén összefüggés a diszkrimináns előjele és a valós gyökök száma között.

december 8. 8:00-10:00, Északi tömb 1.71 (Pócza Jenő terem) Második évfolyamzárthelyi a 6-11. előadások anyagából

A vizsga

A bizonyítandó vizsgakérdések. Ezek mellé mindeki kap még egy-egy tételt, amit csak kimondani kell.
A vizsga szóbeli lesz, célja annak megállapítása, hogy a vizsgázó érti-e az anyagot (ilyesfajta kérdések szerepelhetnek: adjunk példát arra, amikor egy tétel alkalmazható, vagy egy definíció teljesül, szükséges-e egy állítás adott feltétele (ha nem, ellenpéldát kell adni), alkalmazható-e egy definíció egy adott szituációban, alkalmazzunk egy tanult módszert egy konkrét helyzetben). A gyakorlatok (és a konzultációk) segítenek a vizsgára való felkészülésben is.

A vizsgán mindenki egy tételpárt húz. Ezek egyike egy bizonyítás ismertetése, a másik néhány tételt felölelő téma, ahol a definíciókat, az eredmények összefüggéseit kell elmondani (de a bizonyításokba itt is belekérdezhet a vizsgáztató). Az átmenéshez mindkét tételt legalább elégséges szinten tudni kell.

Elsődlegesen ajánlott irodalom

A két fő tankönyv lineáris algebrából az [1], az anyag többi részéből a [3]. Ezek mindegyike feladatgyűjtemény is egyben. A [2] és [4] kiegészítő feladatgyűjtemények.
[1] Freud Róbert: Lineáris Algebra (ELTE kiadó).
[2] Fagyejev-Szominszkij: Felsőfokú algebrai feladatok (TypoTeX kiadó, 2000).
[3] Kiss Emil: Bevezetés az algebrába (TypoTeX kiadó, 2007)
[4] Szendrei-Czédli-Szendrei: Absztrakt algebrai feladatok (Polygon kiadó).

További ajánlott irodalom

Számelméleti ismeretekre állandóan szükség van, ezek a [6] könyvből tanulhatók meg. A logikai készségek gyakorlásához és tudatosításához a [8] könyv nyújt segítséget. A [9], [10] könyvek a matematikáról szólnak mindenkinek (még a laikus barátoknak is).
[5] Fried Ervin: Algebra I-II (Tankönyvkiadó).
[6] Freud Róbert, Gyarmati Edit: Számelmélet (Tankönyvkiadó).
[7] Fuchs László: Algebra (egyetemi jegyzet).
[8] Varga Tamás: Matematikai logika kezdőknek I-II (Tankönyvkiadó).
[9] Rényi Alfréd: Ars Mathematica (Magvető Könyvkiadó).
[10] Péter Rózsa: Játék a végtelennel (Tankönyvkiadó).

A gyakorlat:

(Kedd 12-13:30, ill. Csütörtök 8:15-9:45)

A gyakorlat kis csoportokban zajlik, az elméleti anyag megértésére szolgál önálló feladatmegoldás segítségével. A gyakorlatra kötelező járni, egy félévben legfeljebb három hiányzás megengedett. Ha háromnál több hiányzás van, az nem elégtelen gyakorlati jegyet jelent, hanem aláírásmegtagadást, ilyenkor tehát a gyakorlatot újra kell járni, és persze vizsgázni sem lehet. A gyakorlat előtt mindenki nézze át az előadás anyagát, és értse meg a fogalmakat és a tételeket.

Két évfolyamzárthelyit írunk, amelyek hat (esetleg hét) feladatot tartalmaznak, mindegyik 1 pontot ér. A zárthelyin csak egy maximum egy oldalas kézzel írott puska használható. A zárthelyi jegye a pontszám egészrésze, az átmenéshez mindkét zh-n legalább elégségest kell szerezni. Amennyiben mindkét zh-n legalább elégséges jegy született, a gyakorlati jegy minimum a két zh átlagának (alsó) egészrésze. Ennél jobbat órai munka, illetve esetlegesen beadott nehezebb (csillagos feladatok) alapján lehet kapni. Ezeket a feladatokat a félév során kell beadni, és NEM a két zh megírása után, amikor esetlegesen rájöttünk, hogy a gyakorlati jegy nem lesz olyan, mint amilyennek elképzeltük. A javító zh-knak (sok kollégámmal ellentétben, de sok más kollégámmal egyetértésben) nem vagyok híve, mert véleményem szerint a gyakorlati jegy az egész féléves teljesítményt kell tükrözze. Továbbá meggyőződésem, hogy a tananyagot leginkább óráról órára készülve, és nem a zh/vizsga előtt pár nappal lehet elsajátítani. Ennek megfelelően pót-zh-ra csak abban az esetben van lehetőség, ha valaki valamelyik zh-t nem írta meg, viszont egyébként (a zh-ról való hiányzással együtt) nem hiányzott 3-nál többet. A javító zh-t csak rendkívül indokolt esetben tartom elképzelhetőnek, ha valakinek az egyik zh-ja sokkal rosszabbul sikerült, mint a másik, és az órai jó teljesítménye ezt indokolja.

Azoknak, akik (elsőre) elégtelen gyakorlati jegyet szereztek, természetesen lehetőségük lesz egyszeri javítási lehetőségre gyakjegy-UV formájában.

Feladatsorok


1. Gyakorlat (Szeptember 8-10.)
2. Gyakorlat (Szeptember 15-17.)
3. Gyakorlat (Szeptember 22-24.)
4. Gyakorlat (Szeptember 29-Október 1.)
5. Gyakorlat (Október 6-8.)
1. ZH megoldások (Október 20.)

6. Gyakorlat (Október 20-22.)
7. Gyakorlat (November 3-5.)
8. Gyakorlat (November 10-12.)
9. Gyakorlat (November 17-19.)
10. Gyakorlat (November 24-26.)
2. ZH megoldások (December 8.)

Vissza