Algebraic Number Theory

Problem sheet 8

1. (3 points) Let K be a complete field with respect to an archimedean valuation $|\cdot|$. Show that K is isomorphic to either \mathbb{R} or \mathbb{C} such that the isomorphism induces a homeomorphism in the topology of K induced by $|\cdot|$.
2. (3 points) Let K / \mathbb{Q} be a finite extension. Show that any nontrivial absolute value on K is equivalent to either the \mathfrak{p}-adic absolute value for some prime ideal $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ (nonarchimedean case) or to the restriction of the usual absolute value of \mathbb{C} via an embedding $\tau: K \rightarrow \mathbb{C}$ (archimedean case). Two such absolute values are equivalent if and only if both are archmimedean and the two corresponding embeddings $\tau_{1}, \tau_{2}: K \rightarrow \mathbb{C}$ are the complex conjugate of each other.
3. (1 points) Write -1 as a p-adic integer $-1=\sum_{i=0}^{\infty} a_{i} p^{i}\left(a_{i} \in\{0,1, \ldots, p-1\}\right)$.
4. (2 points) Write $2 / 3$ and $-2 / 3$ in 5 -adic form.
5. (4 points) Verify that a p-adic number of the form $\sum_{i=-m}^{\infty} a_{i} p^{i}\left(a_{i}=0,1, \ldots, p-1, i \geq-m\right)$ is rational if and only if the sequence of its digits is eventually periodic.
6. (3 points) Solve the equation $x^{2}=2$ in \mathbb{Z}_{7}.
7. (3 points) Show that any automorphism of the field \mathbb{Q}_{p} is continuous, in particular equals the identity.
8. (2 points) Let $n \geq 1$ be an integer and $n=a_{0}+a_{1} p+\cdots+a_{r} p^{r}$ in base $p\left(0 \leq a_{i}<p\right)$. Further put $s=a_{0}+a_{1}+\cdots+a_{r}$. Verify that $v_{p}(n!)=\frac{n-s}{p-1}$.
9. (2 points) Show that the sequence $1,1 / 10,1 / 100, \ldots, 1 / 10^{n}, \ldots$ does not converge in \mathbb{Q}_{p} for any prime p.
10. (3 points) Let $\varepsilon \in 1+p \mathbb{Z}_{p}$ and $\alpha=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ be a p-adic integer with nth partial sum $s_{n}=a_{0}+a_{1} p+\cdots+a_{n} p^{n} \in \mathbb{Z}$. Show that the limit $\varepsilon^{\alpha}:=\lim _{n \rightarrow \infty} \varepsilon^{s_{n}}$ exists in \mathbb{Z}_{p} making $1+p \mathbb{Z}_{p}$ a \mathbb{Z}_{p}-module (written multiplicatively).
11. (3 points) Assume $(a, p)=1(a \in \mathbb{Z})$. Show that the sequence $a^{p^{n}}$ converges in \mathbb{Q}_{p}.
12. (2 points) Show that the fields \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic fro primes $p \neq q$.
13. (2 points) Verify that the algebraic closure of \mathbb{Q}_{p} is an infinite extension of \mathbb{Q}_{p}.
14. (5 points) Let $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}+\cdots \in \mathbb{Z}_{p}[[X]]$ be a formal power series with coefficients in the ring of p-adic integers. Verify that f is convergent on the p-adic open unit disc $\left\{|X|_{p}<1\right\}$ and has at most finitely many roots therein.
