Algebraic Number Theory

Problem sheet 7

The following problems somewhat build on each other. The goal here is to verify the first case of Fermat's Last Theorem for regular prime exponents.

1. (3 points) Let \mathcal{O}_{n} be the ring of integers in the nth cyclotomic field and $u \in \mathcal{O}_{n}^{\times}$be a unit. Verify that $\frac{u}{\bar{u}}$ is a root of unity. Show, moreover, that $\frac{u}{\bar{u}}$ is a p^{k} th root of unity whenever $n=p^{k}$ for some odd prime p prímre, ie. there is a group homomorphism

$$
\begin{aligned}
\mathcal{O}_{p^{k}}^{\times} & \rightarrow \mu_{p^{k}} \\
u & \mapsto \frac{u}{\bar{u}} .
\end{aligned}
$$

2. (3 points) Let p be an odd prime. Show that any element u in $\mathcal{O}_{p^{k}}^{\times}$can be written as $u=\zeta v$ where ζ is some p^{k} th root of unity and $v \in \mathcal{O}_{p^{k}} \cap \mathbb{R}$ is real.
Assume from now on that $p \nmid x y z$ are integers such that $x^{p}+y^{p}=z^{p}(2<p$ prime $)$.
3. ($1+1$ points) Investigating modulo 9 and modulo 25 show that $p \neq 3,5$.

Assume from now on that $p>5$ and put ζ for a fixed primitive p th root of unity.
4. (1 point) Show that we may assume that x, y, z are pairwise coprime and $p \nmid x-y$.
5. (2 points) Verify that $x+y, x+y \zeta, \ldots, x+y \zeta^{p-1}$ are pairwise coprime in \mathcal{O}_{p}.
6. (2 points) Show that $\alpha^{p} \in \mathbb{Z}+p \mathcal{O}_{p}$ for all $\alpha \in \mathcal{O}_{p}$ (ie. there is an $a \in \mathbb{Z}$ such that $a-\alpha^{p}$ is divisible by p).
7. (2 points) Let $\alpha=a_{0}+a_{1} \zeta+\ldots a_{p-1} \zeta^{p-1}$ where $a_{i} \in \mathbb{Z}(i=0, \ldots, p-1)$ and $a_{i}=0$ for at least one index i. Assume $\alpha \in n \mathcal{O}_{p}$ for some integer $n \in \mathbb{Z}$ and show that $n \mid a_{i}$ for all $i=0, \ldots, p-1$.
8. (2 points) Show that if the class number of a number field is not divisible by p and the p th power of an ideal is principal then the ideal itself is principal.
9. (3 points) Assume p does not divide the class number of \mathcal{O}_{p}. Prove that the equation $x^{p}+y^{p}=z^{p}$ does not have any integral solutions with $p \nmid x y z$.
Hint: write the equation as $\prod_{j=0}^{p-1}\left(x+y \zeta^{j}\right)=(z)^{p}$. Write both sides as a product of prime ideals in \mathcal{O}_{p}. Using previous problems we may write $x+\zeta^{j} y$ in the form $x+\zeta^{j} y=u_{j} \alpha_{j}^{p}$ where $u_{j} \in \mathcal{O}_{p}^{\times}$is a unit and $\alpha_{j} \in \mathcal{O}_{p}$. Now apply Problem 6 to α_{1} and Problem 2 to u_{1} in order to find an integer $r \in \mathbb{Z}$ such that $x+\zeta y \equiv \zeta^{r} v a(\bmod p)$ where $v \in \mathbb{R}, a \in \mathbb{Z}$. Conjugating the previous congruence we obtain $p \mid x+\zeta y-\zeta^{2 r} x-\zeta^{2 r-1} y$. Deduce a contradiction using Problem 7.

