Algebraic Number Theory

Problem sheet 7

The following problems somewhat build on each other. The goal here is to verify the first case of Fermat's Last Theorem for regular prime exponents.

1. (3 points) Let \mathcal{O}_n be the ring of integers in the *n*th cyclotomic field and $u \in \mathcal{O}_n^{\times}$ be a unit. Verify that $\frac{u}{\overline{u}}$ is a root of unity. Show, moreover, that $\frac{u}{\overline{u}}$ is a p^k th root of unity whenever $n = p^k$ for some odd prime p prime, i.e. there is a group homomorphism

$$\begin{array}{rccc} \mathcal{O}_{p^k}^{\times} & \to & \mu_{p^k} \\ u & \mapsto & \frac{u}{\overline{u}} \end{array}.$$

- 2. (3 points) Let p be an odd prime. Show that any element u in $\mathcal{O}_{p^k}^{\times}$ can be written as $u = \zeta v$ where ζ is some p^k th root of unity and $v \in \mathcal{O}_{p^k} \cap \mathbb{R}$ is real. Assume from now on that $p \nmid xyz$ are integers such that $x^p + y^p = z^p$ (2 < p prime).
- 3. (1+1 points) Investigating modulo 9 and modulo 25 show that $p \neq 3, 5$. Assume from now on that p > 5 and put ζ for a fixed primitive *p*th root of unity.
- 4. (1 point) Show that we may assume that x, y, z are pairwise coprime and $p \nmid x y$.
- 5. (2 points) Verify that $x + y, x + y\zeta, \ldots, x + y\zeta^{p-1}$ are pairwise coprime in \mathcal{O}_p .
- 6. (2 points) Show that $\alpha^p \in \mathbb{Z} + p\mathcal{O}_p$ for all $\alpha \in \mathcal{O}_p$ (i.e. there is an $a \in \mathbb{Z}$ such that $a \alpha^p$ is divisible by p).
- 7. (2 points) Let $\alpha = a_0 + a_1 \zeta + \ldots + a_{p-1} \zeta^{p-1}$ where $a_i \in \mathbb{Z}$ $(i = 0, \ldots, p-1)$ and $a_i = 0$ for at least one index *i*. Assume $\alpha \in n\mathcal{O}_p$ for some integer $n \in \mathbb{Z}$ and show that $n \mid a_i$ for all $i = 0, \ldots, p-1$.
- 8. (2 points) Show that if the class number of a number field is not divisible by p and the pth power of an ideal is principal then the ideal itself is principal.
- 9. (3 points) Assume p does not divide the class number of \mathcal{O}_p . Prove that the equation $x^p + y^p = z^p$ does not have any integral solutions with $p \nmid xyz$. Hint: write the equation as $\prod_{j=0}^{p-1} (x+y\zeta^j) = (z)^p$. Write both sides as a product of prime ideals in \mathcal{O}_p . Using previous problems we may write $x + \zeta^j y$ in the form $x + \zeta^j y = u_j \alpha_j^p$ where $u_j \in \mathcal{O}_p^{\times}$ is a unit and $\alpha_j \in \mathcal{O}_p$. Now apply Problem 6 to α_1 and Problem 2 to u_1 in order to find an integer $r \in \mathbb{Z}$ such that $x + \zeta y \equiv \zeta^r va \pmod{p}$ where $v \in \mathbb{R}$, $a \in \mathbb{Z}$. Conjugating the previous congruence we obtain $p \mid x + \zeta y - \zeta^{2r}x - \zeta^{2r-1}y$. Deduce a

contradiction using Problem 7.