Algebraic Number Theory

Problem sheet 6

- 1. (3 points) Assume that L/K is a finite Galois extension of number fields (K/\mathbb{Q}) finite) with non-cyclic Galois group. Show that there are at most finitely many primes \mathfrak{p} in K with only one prime divisor in L.
- 2. (3 points) Let K/\mathbb{Q} be a Galois extension with non-abelian Galois group. Show that no primes p are inert in \mathcal{O}_K .
- 3. (5 points) Let K/\mathbb{Q} be a finite extension. Show that there are infinitely many primes p that split completely in \mathcal{O}_K .
- 4. (3 points) Let L/K be a finite extension of number fields and let $L \leq F$ be the Galois closure of L. Put $G = \operatorname{Gal}(F/K)$, $H = \operatorname{Gal}(F/L)$ and $G_P \leq G$ for the decomposition subgroup of a prime $P \triangleleft \mathcal{O}_F$ dividing $\mathfrak{p} \triangleleft \mathcal{O}_K$. Establish a natural bijection between the primes in L above \mathfrak{p} and the double cosets $H \backslash G/G_P$. Using this give a new proof of the fact that a prime splits completely in a finite extension if and only if it splits completely in its Galois closure. (+3points)
- 5. (5 points) Let L/K be a not necessarily Galois solvable extension of number fields of degree p where p is a prime (ie. the Galois group of the Galois closure of the extension is solvable). Assume further that the prime $\mathfrak{p} \triangleleft \mathcal{O}_K$ does not ramify in L and has at least two distinct prime divisors in L of inertia degree 1. Show that \mathfrak{p} splits completely in L. (Hint: you may use without proof Galois's theorem stating that whenever G is a transitive solvable permutation group of prime degree then any element of G different from the identity has at most 1 fixed point.)
- 6. (4 points) Let A be a finite abelian group. Verify that there exists a finite Galois extension L/\mathbb{Q} such that $\operatorname{Gal}(L/\mathbb{Q}) \cong A$. (The statement is true for any finite solvable group (a theorem of Shafarevich) but open for general finite groups.)
- 7. (3 points) Let n be odd. Describe all quadratic extensions of \mathbb{Q} contained in the cyclotomic field $\mathbb{Q}(\zeta_n)$.
- 8. (3 points) Let $d \in \mathbb{Z}$ be squarefree. Show that there exists a positive integer n such that $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{Q}(\zeta_n)$.
- 9. (3 points) Show that for $q \geq 3$ the quadratic subfields in $\mathbb{Q}(\zeta_{2^q})$ are exactly $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$, and $\mathbb{Q}(i\sqrt{2})$.