Algebraic Number Theory

Problem sheet 6

1. (3 points) Assume that L / K is a finite Galois extension of number fields (K / \mathbb{Q} finite) with non-cyclic Galois group. Show that there are at most finitely many primes \mathfrak{p} in K with only one prime divisor in L.
2. (3 points) Let K / \mathbb{Q} be a Galois extension with non-abelian Galois group. Show that no primes p are inert in \mathcal{O}_{K}.
3. (5 points) Let K / \mathbb{Q} be a finite extension. Show that there are infinitely many primes p that split completely in \mathcal{O}_{K}.
4. (3 points) Let L / K be a finite extension of number fields and let $L \leq F$ be the Galois closure of L. Put $G=\operatorname{Gal}(F / K), H=\operatorname{Gal}(F / L)$ and $G_{P} \leq G$ for the decomposition subgroup of a prime $P \triangleleft \mathcal{O}_{F}$ dividing $\mathfrak{p} \triangleleft \mathcal{O}_{K}$. Establish a natural bijection between the primes in L above \mathfrak{p} and the double cosets $H \backslash G / G_{P}$. Using this give a new proof of the fact that a prime splits completely in a finite extension if and only if it splits completely in its Galois closure. (+3points)
5. (5 points) Let L / K be a - not necessarily Galois - solvable extension of number fields of degree p where p is a prime (ie. the Galois group of the Galois closure of the extension is solvable). Assume further that the prime $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ does not ramify in L and has at least two distinct prime divisors in L of inertia degree 1 . Show that \mathfrak{p} splits completely in L. (Hint: you may use without proof Galois's theorem stating that whenever G is a transitive solvable permutation group of prime degree then any element of G different from the identity has at most 1 fixed point.)
6. (4 points) Let A be a finite abelian group. Verify that there exists a finite Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \cong A$. (The statement is true for any finite solvable group (a theorem of Shafarevich) but open for general finite groups.)
7. (3 points) Let n be odd. Describe all quadratic extensions of \mathbb{Q} contained in the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$.
8. (3 points) Let $d \in \mathbb{Z}$ be squarefree. Show that there exists a positive integer n such that $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{Q}\left(\zeta_{n}\right)$.
9. (3 points) Show that for $q \geq 3$ the quadratic subfields in $\mathbb{Q}\left(\zeta_{2^{q}}\right)$ are exactly $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2})$, and $\mathbb{Q}(i \sqrt{2})$.
