Algebraic Number Theory

Problem sheet 5

1. (a) (2 points) Verify directly that an odd prime p ramifies in $\mathbb{Q}(\sqrt{d})$ if and only if $p \mid d$ (d squarefree). Further, it is inert if $\left(\frac{d}{p}\right)=-1$ and splits into the product of two distinct primes if $\left(\frac{d}{p}\right)=1$.
(b) (2 points) What happens if $p=2$?
2. Decompose 7 and 11 in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})(1+1$ points $)$, respectively of $\mathbb{Q}(\alpha)$ $\left(2+2\right.$ points) where $\alpha^{3}-\alpha-4=0$ (you may use the description of the ring of integers from a previous example sheet).
3. (3 points) Let f_{n} be the n-th element of the Fibonacci sequence $\left(f_{0}=0, f_{1}=1\right.$, $\left.f_{n+1}=f_{n-1}+f_{n}\right)$. Show $f_{p} \equiv\left(\frac{p}{5}\right)(\bmod p)$ for all prime numbers $p \neq 2,5$.
4. (2 points) Let $I, J \triangleleft A$ be ideals in the Dedekind domain A and let B be the integral closure of A in the finite separable field extension L / K where K is the field of fractions of A. Verify that $I=I B \cap A$ and $I|J \Leftrightarrow I B| J B$.
5. (3 points) Give an example of a pair $\mathbb{Q} \leq K_{1}, K_{2}$ of finite extensions and prime p such that p ramifies complete in both extensions K_{1} and K_{2} (ie. $r=1=f_{1}$) but not in the composite extension $K_{1} K_{2}$. (Hint: You may even choose quadratic extensions.)
6. (a) (3 points) Assume $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$ and let $p \in \mathbb{Z}$ be a prime. Show that there are at most p prime ideals $\mathfrak{p}_{i} \triangleleft \mathcal{O}_{K}$ dividing p with $f_{i}=1$ (ie. $\mathcal{O}_{K} / \mathfrak{p}_{i} \cong \mathbb{F}_{p}$).
(b) (2 points) Show that 3 splits completely in $K=\mathbb{Q}(\sqrt{7}, \sqrt{10})$, ie. by part (a) there does not exist $\alpha \in K$ with $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(c) (3 points) Find an integer $0<N \in \mathbb{Z}$ and an element $\alpha \in \mathcal{O}_{K}$ such that $\mathcal{O}_{K}[1 / N]=$ $\mathbb{Z}[1 / N][\alpha]$ and decompose all primes $p \mid N$ as a product of prime ideals in \mathcal{O}_{K}.
7. (4 points) Let $\mathbb{Q} \leq K$ be a finite extension. Show that a prime $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ splits completely in $(K \leq) L$ and in $(K \leq) L^{\prime}$ then it splits completely in the composite extension $L L^{\prime}$, as well (ie. in the smallest subfield of a given algebraic closure \bar{K} containing both L and $\left.L^{\prime}\right)$.
8. (3 points) Let $\mathbb{Q} \leq K \leq L$ be finite extensions and $K \leq L \leq F$ be the Galois closure of L / K. Show that a prime $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ splits completely in L if and only if it splits completely in F.
9. (3 points) Show that no primes of $\mathbb{Q}(\sqrt{-5})$ ramify in the extension $\mathbb{Q}(\sqrt{-1}, \sqrt{-5}) / \mathbb{Q}(\sqrt{-5})$.
