Algebraic Number Theory

Problem sheet 3

1. (3 points) Verify the Chinese Remainder Theorem for Dedekind domains: If $A \triangleleft \mathcal{O}$ is an ideal in the Dedekind domain \mathcal{O} with decomposition $A = P_1^{\nu_1} \dots P_t^{\nu_t}$ as a product of prime ideals then we have

$$\mathcal{O}/A \cong \bigoplus_{i=1}^t \mathcal{O}/P_i^{\nu_i}$$
.

- 2. (3 points) Show that a lattice $\Gamma \subset V$ is complete if and only if V/Γ is compact.
- 3. (2 points) Let $L_i(x_1, \ldots, x_n) = \sum_{j=1}^n a_{ij} x_j$ $(i = 1, \ldots, n)$ be real homogeneous linear polynomials such that $\det((a_{ij}))_{ij} \neq 0$ and let c_1, \ldots, c_n be positive real numbers with $c_1 \ldots c_n > |\det((a_{ij}))_{ij}|$. Verify that there exist not all zero integers $m_1, \ldots, m_n \in \mathbb{Z}$ such that $|L_i(m_1, \ldots, m_n)| < c_i$ $(i = 1, \ldots, n)$.
- 4. (2+2 points) Show that the map

is an isomorphism of rings. Moreover, prove that its restriction to $\mathbb{R} \otimes_{\mathbb{Q}} K$ also induces an isomorphism between $K \otimes_{\mathbb{Q}} \mathbb{R}$ and $K_{\mathbb{R}}$.

- 5. (1 point each) Verify that the ring of integers of quadratic extensions of Q with discriminant 5, 8, 11, −3, −4, −7, −8, −11, respectively, are all unique factorization domains.
- 6. (a) (4 points) Let $X_t := \{z \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| < t\}$ for any real number 0 < t. Verify $\operatorname{vol}(X_t) = 2^r \pi^s \frac{t^n}{n!}$.
 - (b) (4 points) Assume $|K/\mathbb{Q}| = n$. Show $|d_K|^{1/2} \ge \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{n/2}$. (Hint: choose t so that $\operatorname{vol}(X_t) > 2^n \operatorname{vol}(\Gamma)$ where $\Gamma = j(\mathcal{O}_K) \subset K_{\mathbb{R}}$. Apply the inequality between geometric and arithmetic mean on the numbers $|\tau(\alpha)|$ where $0 \neq \alpha \in \mathcal{O}_K$ is the element with $j(\alpha) \in X_t$ guaranteed by Minkowski's lattice point theorem. Finally, note that $1 \le |N_{K/\mathbb{Q}}(\alpha)|$.)
 - (c) (1 point) Show that whenever the degree $|K : \mathbb{Q}|$ goes to infinity, so does the discriminant d_K . Moreover, we have $d_K > 1$ for all extensions $K \neq \mathbb{Q}$.
- 7. (a) (3 points) Let $A \triangleleft \mathcal{O}_K$ be an ideal whose class has order m in the class group (ie. m is the smallest integer such that $A^m = (\alpha)$ is a principal ideal). Prove that $A\mathcal{O}_L = (\beta)$ where $L = K(\beta)$ and $\beta^m = \alpha$.

- (b) (1 point) Verify that for each number field K there is a finite extension L/K in which all ideals of \mathcal{O}_K become principal (ie. all ideals of \mathcal{O}_K capitulate in \mathcal{O}_L).
- (c) (2 points) Verify that the ring Ω of all algebraic integers (in \mathbb{C}) is a *Bézout domain*, i.e. all finitely generated ideals are principal (but not noetherian, so not a PID).
- 8. (a) (3 points) Show that over a Bézout domain every finitely generated torsion-free module is free.
 - (b) (2 points) Verify that $\bigcup_{n=1}^{\infty} \mathbb{C}[[x^{1/n}]]$ is a Bézout domain.
- 9. In this exercise we compute the rank of the unit group \mathcal{O}_K^{\times} as an abelian group using a multiplicative version of Minkowski's theory.
 - (a) (3 points) Let $K_{\mathbb{C}}^{\times} = \prod_{\tau} \mathbb{C}^{\times}$ be the multiplicative group of invertible elements in the ring $K_{\mathbb{C}}$ and let $N \colon K_{\mathbb{C}}^{\times} \to \mathbb{C}^{\times}$ be the group homomorphism defined as the product of coordinates. Further define the homomorphism $l := \log |\cdot| \colon K_{\mathbb{C}}^{\times} \to \prod_{\tau} \mathbb{R}$ coordinatewise. Show that the kernel of $l \circ j \colon \mathcal{O}_{K}^{\times} \to \prod_{\tau} \mathbb{R}$ is the torsion subgroup in \mathcal{O}_{K}^{\times} , ie. the group $\mu(K)$ of roots of unity in K.
 - (b) (2 points) Verify that for each $\alpha \in \mathcal{O}_K^{\times}$ the element $l \circ j(\alpha) \in \prod_{\tau} \mathbb{R}$ is fixed by the complex conjugation (permuting $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$). Further show that the sum of coordinates of $l \circ j(\alpha)$ equals 0.
 - (c) (5 points) Show that $l \circ j(\mathcal{O}_K^{\times})$ is a full lattice in the subspace H where

$$H = \{ x_{\tau} \in \prod_{\tau} \mathbb{R} \mid \sum_{\tau} x_{\tau} = 0 \text{ and } x_{\sigma_k} = x_{\overline{\sigma_k}} \ (k = 1, \dots, s) \}$$

In particular, $\mathcal{O}_K^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s-1}$ (as an abelian group).