Algebraic Number Theory

Problem sheet 3

1. (3 points) Verify the Chinese Remainder Theorem for Dedekind domains: If $A \triangleleft \mathcal{O}$ is an ideal in the Dedekind domain \mathcal{O} with decomposition $A=P_{1}^{\nu_{1}} \ldots P_{t}^{\nu_{t}}$ as a product of prime ideals then we have

$$
\mathcal{O} / A \cong \bigoplus_{i=1}^{t} \mathcal{O} / P_{i}^{\nu_{i}}
$$

2. (3 points) Show that a lattice $\Gamma \subset V$ is complete if and only if V / Γ is compact.
3. (2 points) Let $L_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}(i=1, \ldots, n)$ be real homogeneous linear polynomials such that $\operatorname{det}\left(\left(a_{i j}\right)\right)_{i j} \neq 0$ and let c_{1}, \ldots, c_{n} be positive real numbers with $c_{1} \ldots c_{n}>\left|\operatorname{det}\left(\left(a_{i j}\right)\right)_{i j}\right|$. Verify that there exist not all zero integers $m_{1}, \ldots, m_{n} \in \mathbb{Z}$ such that $\left|L_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i}(i=1, \ldots, n)$.
4. $(2+2$ points) Show that the map

$$
\begin{aligned}
\mathbb{C} \otimes_{\mathbb{Q}} K & \rightarrow K_{\mathbb{C}} \\
z \otimes \alpha & \mapsto z \cdot(j \alpha)
\end{aligned}
$$

is an isomorphism of rings. Moreover, prove that its restriction to $\mathbb{R} \otimes_{\mathbb{Q}} K$ also induces an isomorphism between $K \otimes_{\mathbb{Q}} \mathbb{R}$ and $K_{\mathbb{R}}$.
5. (1 point each) Verify that the ring of integers of quadratic extensions of \mathbb{Q} with discriminant $5,8,11,-3,-4,-7,-8,-11$, respectively, are all unique factorization domains.
6. (a) (4 points) Let $X_{t}:=\left\{z \in K_{\mathbb{R}}\left|\sum_{\tau}\right| z_{\tau} \mid<t\right\}$ for any real number $0<t$. Verify $\operatorname{vol}\left(X_{t}\right)=2^{r} \pi^{s} \frac{X^{n}}{n!}$.
(b) (4 points) Assume $|K / \mathbb{Q}|=n$. Show $\left|d_{K}\right|^{1 / 2} \geq \frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{n / 2}$. (Hint: choose t so that $\operatorname{vol}\left(X_{t}\right)>2^{n} \operatorname{vol}(\Gamma)$ where $\Gamma=j\left(\mathcal{O}_{K}\right) \subset K_{\mathbb{R}}$. Apply the inequality between geometric and arithmetic mean on the numbers $|\tau(\alpha)|$ where $0 \neq \alpha \in \mathcal{O}_{K}$ is the element with $j(\alpha) \in X_{t}$ guaranteed by Minkowski's lattice point theorem. Finally, note that $1 \leq\left|N_{K / \mathbb{Q}}(\alpha)\right|$.)
(c) (1 point) Show that whenever the degree $|K: \mathbb{Q}|$ goes to infinity, so does the discriminant d_{K}. Moreover, we have $d_{K}>1$ for all extensions $K \neq \mathbb{Q}$.
7. (a) (3 points) Let $A \triangleleft \mathcal{O}_{K}$ be an ideal whose class has order m in the class group (ie. m is the smallest integer such that $A^{m}=(\alpha)$ is a principal ideal). Prove that $A \mathcal{O}_{L}=(\beta)$ where $L=K(\beta)$ and $\beta^{m}=\alpha$.
(b) (1 point) Verify that for each number field K there is a finite extension L / K in which all ideals of \mathcal{O}_{K} become principal (ie. all ideals of \mathcal{O}_{K} capitulate in \mathcal{O}_{L}).
(c) (2 points) Verify that the ring Ω of all algebraic integers (in \mathbb{C}) is a Bézout domain, ie. all finitely generated ideals are principal (but not noetherian, so not a PID).
8. (a) (3 points) Show that over a Bézout domain every finitely generated torsion-free module is free.
(b) (2 points) Verify that $\bigcup_{n=1}^{\infty} \mathbb{C}\left[\left[x^{1 / n}\right]\right]$ is a Bézout domain.
9. In this exercise we compute the rank of the unit group \mathcal{O}_{K}^{\times}as an abelian group using a multiplicative version of Minkowski's theory.
(a) (3 points) Let $K_{\mathbb{C}}^{\times}=\prod_{\tau} \mathbb{C}^{\times}$be the multiplicative group of invertible elements in the ring $K_{\mathbb{C}}$ and let $N: K_{\mathbb{C}}^{\times} \rightarrow \mathbb{C}^{\times}$be the group homomorphism defined as the product of coordinates. Further define the homomorphism $l:=\log |\cdot|: K_{\mathbb{C}}^{\times} \rightarrow \prod_{\tau} \mathbb{R}$ coordinatewise. Show that the kernel of $l \circ j: \mathcal{O}_{K}^{\times} \rightarrow \prod_{\tau} \mathbb{R}$ is the torsion subgroup in \mathcal{O}_{K}^{\times}, ie. the group $\mu(K)$ of roots of unity in K.
(b) (2 points) Verify that for each $\alpha \in \mathcal{O}_{K}^{\times}$the element $l \circ j(\alpha) \in \prod_{\tau} \mathbb{R}$ is fixed by the complex conjugation (permuting $\tau \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$). Further show that the sum of coordinates of $l \circ j(\alpha)$ equals 0 .
(c) (5 points) Show that $l \circ j\left(\mathcal{O}_{K}^{\times}\right)$is a full lattice in the subspace H where

$$
H=\left\{x_{\tau} \in \prod_{\tau} \mathbb{R} \mid \sum_{\tau} x_{\tau}=0 \text { and } x_{\sigma_{k}}=x_{\overline{\sigma_{k}}}(k=1, \ldots, s)\right\}
$$

In particular, $\mathcal{O}_{K}^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s-1}$ (as an abelian group).

