Algebraic Number Theory

Problem sheet 2

1. (3 points) Find an integral basis in the ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is squarefree.
2. (3 points) Let \mathcal{O} be the ring of integers in $\mathbb{Q}(\sqrt{d})(d \in \mathbb{Z}$ squarefree) and $p \nmid 2 d$ be a prime. Show that $p \mathcal{O}$ is a prime ideal if and only if $\left(\frac{d}{p}\right)=-1$.
3. (4 points) Verify that the ring $\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$ is not integrally closed.
4. (5 points) Let K / \mathbb{Q} be finite (ie. K is a number field) and d_{K} be the discriminant of K. Show that $d_{K} \equiv 0,1(\bmod 4)$. (Hint: Try taking the permanent (ie. sum of all expression with $+\operatorname{sign}$ as in the determinant) of the matrix $\left(\left(\sigma_{i} \alpha_{j}\right)\right)$ and use the identity $\left.(a-b)^{2}=(a+b)^{2}-4 a b.\right)$
5. (2 points) Decompose $33+11 \sqrt{-7}$ as a product of irreducible elements in the ring of integers in $\mathbb{Q}(\sqrt{-7})$.
6. (4 points) Show that a Dedekind domain with finitely many prime ideals is a principal ideal domain.
7. $(3+3$ points $)$
(i) Let \mathcal{O} be a Dedekind domain and $I \triangleleft \mathcal{O}$ be an ideal. Show that any ideal in \mathcal{O} / I is principal.
(ii) Show that any ideal in a Dedekind domain is generated by two elements.
8. (5 points) Let \mathcal{O} be an integral domain in which there is a unique factorization of ideals as a product of prime ideals. Show that \mathcal{O} is a Dedekind domain (ie. noetherian, integrally closed, and 1-dimensional).
9. (5 points) Show that each ideal in a Dedekind domain is a projective module.
10. $\left(3+3\right.$ points) Let $f(x, y) \in \mathbb{C}[x, y]$ be an irreducible nonsingular polynomial (ie. $\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=$ (1) as ideals in $\mathbb{C}[x, y])$. Verify that $\mathbb{C}[x, y] /(f(x, y))$ is a Dedekind domain. What is the class group of $\mathbb{C}[x, y] /(f(x, y))$ if we further assume that f is of the form $f(x, y)=$ $y^{2}-x^{3}-a x-b$ where $x^{3}+a x+b$ has no repeated roots (ie. f is the equation of an elliptic curve)? (Compare to Problem 3 where the curve is singular.)
