Algebraic Number Theory

Problem sheet 11

The following problems build on each other. The main goal is the definition of the Lubin-Tate formal groups and the construction of Lubin-Tate extensions of local fields using them.

1. (3 points) Let R be a commutative ring with identity. A (one-parameter) commutative formal group law is by definition a two-variable power series $F(X, Y) \in R[[X, Y]]$ satisfying the following properties:
(i) $F(X, Y)=X+Y+$ terms of higher degree;
(ii) $F(X, F(Y, Z))=F(F(X, Y), Z)$ (associative);
(iii) there exists a power series $\iota_{F}(X) \in X R[[X]]$ such that $F\left(X, \iota_{F}(X)\right)=0$ (inverse);
(iv) $F(X, Y)=F(Y, X)$ (commutative).

Show that if $R=\mathcal{O}_{K}$ is the valuation ring in a complete nonarchimedean field and \mathcal{M}_{K} is the maximal ideal then \mathcal{M}_{K} is a group with respect to the operation $a+{ }_{F} b:=F(a, b)$. Further verify that the power series $F(X, Y)=X+Y$, resp. $F(X, Y)=X+Y+X Y$ define commutative formal groups. What is $\left(\mathcal{M}_{K},+_{F}\right)$ isomorphic to in these two cases?
2. (3 points) A homomorphism between the formal group laws F and G is a power series $h(T) \in$ $T R[[T]]$ such that $h(F(X, Y))=G(h(X), h(Y))$. Show that in case $F=G$ the set $\operatorname{End}(F):=$ $\operatorname{Hom}(F, F)$ is a ring with respect to the addition $+_{F}$ and composition as multiplication. Show further that $h_{n}(T)=(T+1)^{n}-1$ is an endomorphism of the formal group law $F(X, Y)=$ $X+Y+X Y$ for any integer $n \geq 1$.
3. (4 points) From now on put $R=\mathcal{O}_{K}$ where K / \mathbb{Q}_{p} is a finite extension and $\pi \in \mathcal{O}_{K}$ is a prime element (unique upto multiplication by a unit). Denote by \mathcal{F}_{π} the set of power series $f(X) \in$ $\mathcal{O}_{K}[[X]]$ such that $f(X)=\pi X+$ terms of higher degree and $f(X) \equiv X^{q}(\bmod \pi)$ where $q=$ p^{f} is the cardinality of the residue field $k=\mathcal{O}_{K} / \mathcal{M}_{K}$. Let $f, g \in \mathcal{F}_{\pi}$ and $\phi_{1}\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree one. Show that there exists a unique formal power series $\phi\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{O}_{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ in n variables such that $\phi\left(X_{1}, \ldots, X_{n}\right)=$ $\phi_{1}\left(X_{1}, \ldots, X_{n}\right)+$ terms of higher degree and $f\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right)=\phi\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)$.
4. (3 points) Show that for all $f \in \mathcal{F}_{\pi}$ there exists a unique formal group law $F_{f}(X, Y) \in \mathcal{O}_{K}[[X, Y]]$ such that f is an endomorphism of F_{f}. (Such formal groups are called Lubin-Tate formal groups.)
5. (3 points) Let a be arbitrary in \mathcal{O}_{K} and $f, g \in \mathcal{F}_{\pi}$. Verify that there exists a unique power series $[a]_{g, f}(T) \in T \mathcal{O}_{K}[[T]]$ such that $[a]_{g, f}(T)=a T+$ terms of higher degree and $[a]_{g, f} \circ f=g \circ[a]_{g, f}$. Moreover, $[a]_{g, f}$ is a homomorphism from F_{f} to F_{g}. In particular, F_{f} and F_{g} are isomorphic.
6. (2 points) Verify that the map $\mathcal{O}_{K} \rightarrow \operatorname{End}\left(F_{f}\right), a \mapsto[a]_{f}:=[a]_{f, f}$ is an injective ring homomorphism such that $[\pi]_{f}=f$. (This makes F_{f} into a formal \mathcal{O}_{K}-module.)
7. (3 points) Let $f \in \mathcal{F}_{\pi}$ be arbitrary (by Problem 5 we may assume for sake of simplicity that $f(T)=\pi T+T^{q}$) put Λ_{n} for the set of roots of the polynomial $f^{(n)}=\underbrace{f \circ \cdots \circ f}_{n}$ in the algebraic closure of \mathbb{Q}_{p}. Show that Λ_{n} has cardinality q^{n} and it is an \mathcal{O}_{K}-module with respect to the addition $+_{F_{f}}$ and multiplication $a \cdot{ }_{F_{f}} \lambda:=[a]_{f}(\lambda)\left(a \in \mathcal{O}_{K}, \lambda \in \Lambda_{n}\right)$. Verify the isomorphism $\Lambda_{n} \cong \mathcal{O}_{K} /\left(\pi^{n}\right)$ as \mathcal{O}_{K}-modules.
8. (4 points) Let $K_{\pi, n}:=K\left(\Lambda_{n}\right)$ be the splitting field of $f^{(n)}$ over K. Show that we have $\operatorname{Gal}\left(K_{\pi, n} / K\right) \cong$ $\left(\mathcal{O}_{K} /\left(\pi^{n}\right)\right)^{\times}$and that $K_{\pi, n} / K$ is totally ramified. Further, $K_{\pi, n}$ does not depend on the choice of $f \in \mathcal{F}_{\pi}$ and π is the norm of a suitable element in $K_{\pi, n}$.

The field $K_{\pi, n}$ is called the nth Lubin-Tate extension of K (with respect to the uniformizer π). For p-adic number fields other than \mathbb{Q}_{p} these play the role of the analogs of the p-power cyclotomic extensions. Indeed, the following generalization of the local Kronecker-Weber theorem holds:

Theorem. Let K / \mathbb{Q}_{p} be a finite and $\pi \in K$ be a uniformizer. Let L / K be a Galois extension with abelian Galois group $\operatorname{Gal}(L / K)$. Then there exists a positive integer n such that $L \subseteq K_{\pi, n} K_{n}^{u r}$ where $K_{n}^{u r}$ is the (unique) unramified extension of K of degree n. In other words $K_{\pi, \infty} K_{\infty}^{u r}$ is the maximal abelian extension of K where $K_{\pi, \infty}=\bigcup_{n} K_{\pi, n}$ and $K_{\infty}^{u r}=\bigcup_{n} K_{n}^{u r}$. Moreover, we have $\operatorname{Gal}(\bar{K} / K)^{a b}=$ $\operatorname{Gal}\left(K_{\pi, \infty} K_{\infty}^{u r} / K\right) \cong \mathcal{O}_{K}^{\times} \times \hat{\mathbb{Z}}$.

