Algebraic Number Theory

Problem sheet 10

1. (2 points) Let K / \mathbb{Q}_{p} be a finite extension. Verify that the power series $\log (1+x)=x-\frac{x^{2}}{2}+\cdots+$ $(-1)^{n+1} \frac{x^{n}}{n}+\ldots$ is convergent on the maximal ideal of the valuation ring of K.
2. (3 points) For what p-adic absolute value of x does the power series $\exp (x)=1+x+\cdots+\frac{x^{n}}{n!}+\ldots$ converge? (Determine the radius of convergence.)
3. (3 points) Let K / \mathbb{Q}_{p} be a finite extension with absolute ramification index e and maximal ideal \mathfrak{p}. Show that $\exp : \mathfrak{p}^{n} \rightarrow U^{(n)}=1+\mathfrak{p}^{n}$ and $\log : U^{(n)} \rightarrow \mathfrak{p}^{n}$ establish an isomorphism between the additive group \mathfrak{p}^{n} and the multiplicative group $U^{(n)}$ assuming $n>\frac{e}{p-1}$. In particular, $U^{(n)}$ is torsion-free as an abelian group.
4. (3 points) Let $\left|K: \mathbb{Q}_{p}\right|=d$ and $\pi \in K$ be a prime element. Show the isomorphism $K^{\times} \cong$ $\pi^{\mathbb{Z}} \oplus Z_{q-1} \oplus Z_{p^{a}} \oplus \mathbb{Z}_{p}^{d}$ for a suitable integer $a \geq 0$ where q denotes the cardinality of the residue field.
5. (2 points) Verify that the binomial series $(1+x)^{z}=\sum_{n=0}^{\infty}\binom{z}{n} x^{n}$ is convergent for any fixed $z \in \mathbb{Z}_{p}$ and $v_{p}(x)>\frac{1}{p-1}$. Moreover, we have $(1+x)^{z}=\exp (z \log (1+x))$ in this case.
6. (3 points) Let K / \mathbb{Q}_{p} be finite. Show that any finite index subgroup of K^{\times}is open (hence closed, too).
7. (3 points) Let K / \mathbb{Q}_{p} be a finite extension, $\pi \in K$ be a prime element, and v_{π} be the normalized valuation (ie. $v_{\pi}(\pi)=1$). Since K is a locally compact abelian group, it admits a translation invariant Haar measure $d x$, that is unique if we assume $\int_{\mathcal{O}_{K}} d x=1$. Show that $|a|_{\pi}=\int_{a \mathcal{O}_{K}} d x$ where the absolute value $|\cdot|$ is normalized so that $|a|_{\pi}:=q^{-v_{\pi}(a)}$ where $q=\left|\mathcal{O}_{K} /(\pi)\right|$ is the cardinality of the residue field. Further show that $\frac{d x}{|x| \pi}$ is a translation invariant Haar measure on the multiplicative group K^{\times}.
8. (3 points) Let K / \mathbb{Q}_{p} be finite. Show that the slopes of the Newton polygon of a polynomial $f(x) \in K[x]$ are exactly the π-adic valuations of its roots (with multiplicity) where $\pi \in K$ is a prime element (and the Newton polygon is constructed using the π-adic valuation).
9. (3 points) Let K / \mathbb{Q}_{p} be finite. Assume that $f(x) \in K[x]$ is irreducible. Show that the Newton polygon of f consists of a single segment. Give examples that this segment may or may not contain a lattice point apart from the end points.
