Algebraic Number Theory

Problem Sheet 8

to be handed in until 22nd November 2018

- 1. (3 points) Let K be a field that is complete with respect to some archimedean absolute value $|\cdot|$. Show that K is (topologically) isomorphic to either \mathbb{R} or \mathbb{C} .
- 2. (3 points) Let K/\mathbb{Q} be a finite extension. Verify that any nontrivial absolute value on K is equivalent to either the **p**-adic valuation coming from a prime ideal in $\mathfrak{p} \triangleleft \mathcal{O}_K$ (non-archimedean case) or to the restriction of the usual absolute value on \mathbb{C} under an embedding $\tau \colon K \to \mathbb{C}$ (archimedean case). Two such absolute values are equivalent if and only if they are both archimedean and the corresponding embeddings $\tau_1, \tau_2 \colon K \to \mathbb{C}$ (\mathbb{Q} -homomorphisms) are complex conjugates of each other.
- 3. (1 point) Write -1 in *p*-adic form $-1 = \sum_{i=0}^{\infty} a_i p^i$.
- 4. (2 points) Write 2/3 and -2/3 in 5-adic form.
- 5. (4 points) Prove that a *p*-adic number of the form $\sum_{i=-m}^{\infty} a_i p^i$ $(a_i = 0, 1, \dots, p-1, i \ge -m)$ is rational if and only if its digits are eventually periodic.
- 6. (3 points) Solve the equation $x^2 = 2$ in \mathbb{Z}_7 .
- 7. (3 points) Verify that any (algebraic) field automorphism of \mathbb{Q}_p is continuous (and therefore identical).
- 8. (2 points) Let $n \ge 1$ be an integer and $n = a_0 + a_1 p + \dots + a_r p^r$ be its form in base p $(0 \le a_i < p)$. Further put $s = a_0 + a_1 + \dots + a_r$. Verify that $v_p(n!) = \frac{n-s}{p-1}$.
- 9. (2 points) Verify that the sequence $1, 1/10, 1/100, \ldots, 1/10^n, \ldots$ is not convergent in \mathbb{Q}_p for any prime p.
- 10. (3 points) Let $\varepsilon \in 1 + p\mathbb{Z}_p$ and $\alpha = a_0 + a_1p + a_2p^2 + \dots$ be a *p*-adic integer, and put $s_n = a_0 + a_1p + \dots + a_np^n \in \mathbb{Z}$. Show that the limit $\varepsilon^{\alpha} := \lim_{n \to \infty} \varepsilon^{s_n}$ exists in \mathbb{Z}_p making $1 + p\mathbb{Z}_p$ a \mathbb{Z}_p -module (written multiplicatively).
- 11. (3 points) Assume (a, p) = 1 $(a \in \mathbb{Z})$. Show that the sequence a^{p^n} converges in \mathbb{Q}_p .
- 12. (2 points) Verify that \mathbb{Q}_p is not isomorphic (algebraically) to \mathbb{Q}_q for primes $p \neq q$.
- 13. (2 points) Show that the algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p is an infinite extension of \mathbb{Q}_p .

- 14. (5 points) Denote by $\mathbb{Z}_p[[X]]$ the ring of formal power series over \mathbb{Z}_p . Let $g \in \mathbb{Z}_p[[X]]$ be arbitrary and $f(X) = a_0 + a_1X + \cdots + a_nX^n + \cdots \in \mathbb{Z}_p[[X]]$ such that $p \mid a_i$ for all $0 \leq i \leq n-1$ but $p \nmid a_n$. Verify that one can divide g by f with residues in this situation, i.e. there exist a power series $q \in \mathbb{Z}_p[[X]]$ and a polynomial $r \in \mathbb{Z}_p[X]$ of degree at most n-1 with g = qf + r (and these are unique).
- 15. (3 points) ("*p*-adic Weierstraß preparation theorem") Show that you may write any $0 \neq f(X) \in \mathbb{Z}_p[\![X]\!]$ of the form $f(X) = p^{\mu}g(X)u(X)$ where $\mu \geq 0$ is an integer, $u(X) \in \mathbb{Z}_p[\![X]\!]^{\times}$ is a unit, and $g(X) \in \mathbb{Z}_p[X]$ is a monic polynomial with all non-leading coefficients divisible by *p*.