Algebraic Number Theory

Problem Sheet 8

to be handed in until 22nd November 2018

1. (3 points) Let K be a field that is complete with respect to some archimedean absolute value $|\cdot|$. Show that K is (topologically) isomorphic to either \mathbb{R} or \mathbb{C}.
2. (3 points) Let K / \mathbb{Q} be a finite extension. Verify that any nontrivial absolute value on K is equivalent to either the \mathfrak{p}-adic valuation coming from a prime ideal in $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ (non-archimedean case) or to the restriction of the usual absolute value on \mathbb{C} under an embedding $\tau: K \rightarrow \mathbb{C}$ (archimedean case). Two such absolute values are equivalent if and only if they are both archimedean and the corresponding embeddings $\tau_{1}, \tau_{2}: K \rightarrow \mathbb{C}$ (\mathbb{Q}-homomorphisms) are complex conjugates of each other.
3. (1 point) Write -1 in p-adic form $-1=\sum_{i=0}^{\infty} a_{i} p^{i}$.
4. (2 points) Write $2 / 3$ and $-2 / 3$ in 5 -adic form.
5. (4 points) Prove that a p-adic number of the form $\sum_{i=-m}^{\infty} a_{i} p^{i}\left(a_{i}=0,1, \ldots, p-1\right.$, $i \geq-m)$ is rational if and only if its digits are eventually periodic.
6. (3 points) Solve the equation $x^{2}=2$ in \mathbb{Z}_{7}.
7. (3 points) Verify that any (algebraic) field automorphism of \mathbb{Q}_{p} is continuous (and therefore identical).
8. (2 points) Let $n \geq 1$ be an integer and $n=a_{0}+a_{1} p+\cdots+a_{r} p^{r}$ be its form in base p $\left(0 \leq a_{i}<p\right)$. Further put $s=a_{0}+a_{1}+\cdots+a_{r}$. Verify that $v_{p}(n!)=\frac{n-s}{p-1}$.
9. (2 points) Verify that the sequence $1,1 / 10,1 / 100, \ldots, 1 / 10^{n}, \ldots$ is not convergent in \mathbb{Q}_{p} for any prime p.
10. (3 points) Let $\varepsilon \in 1+p \mathbb{Z}_{p}$ and $\alpha=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ be a p-adic integer, and put $s_{n}=a_{0}+a_{1} p+\cdots+a_{n} p^{n} \in \mathbb{Z}$. Show that the limit $\varepsilon^{\alpha}:=\lim _{n \rightarrow \infty} \varepsilon^{s_{n}}$ exists in \mathbb{Z}_{p} making $1+p \mathbb{Z}_{p}$ a \mathbb{Z}_{p}-module (written multiplicatively).
11. (3 points) Assume $(a, p)=1(a \in \mathbb{Z})$. Show that the sequence $a^{p^{n}}$ converges in \mathbb{Q}_{p}.
12. (2 points) Verify that \mathbb{Q}_{p} is not isomorphic (algebraically) to \mathbb{Q}_{q} for primes $p \neq q$.
13. (2 points) Show that the algebriac closure $\overline{\mathbb{Q}_{p}}$ of \mathbb{Q}_{p} is an infinite extension of \mathbb{Q}_{p}.
14. (5 points) Denote by $\mathbb{Z}_{p}[[X]]$ the ring of formal power series over \mathbb{Z}_{p}. Let $g \in \mathbb{Z}_{p}[[X]]$ be arbitrary and $f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}+\cdots \in \mathbb{Z}_{p}\left[[X]\right.$ such that $p \mid a_{i}$ for all $0 \leq i \leq n-1$ but $p \nmid a_{n}$. Verify that one can divide g by f with residues in this situation, ie. there exist a power series $q \in \mathbb{Z}_{p}[[X]]$ and a polynomial $r \in \mathbb{Z}_{p}[X]$ of degree at most $n-1$ with $g=q f+r$ (and these are unique).
15. (3 points) (" p-adic Weierstraß preparation theorem") Show that you may write any $0 \neq f(X) \in \mathbb{Z}_{p}[[X]]$ of the form $f(X)=p^{\mu} g(X) u(X)$ where $\mu \geq 0$ is an integer, $u(X) \in \mathbb{Z}_{p}[[X]]^{\times}$is a unit, and $g(X) \in \mathbb{Z}_{p}[X]$ is a monic polynomial with all non-leading coefficients divisible by p.
