Algebraic Number Theory

Problem sheet 7

to be handed in until 15th November 2018

The following problems build somewhat on each other. The goal here is to show the first case (ie. assuming $p \nmid x y z$) of Fermat's Last Theorem $\left(x^{p}+y^{p}=z^{p} \Rightarrow x y z=0\right)$ for regular (ie. p does not divide the class number of $\left.\mathbb{Q}\left(\mu_{p}\right)\right)$ primes.

1. (3 points) Verify that $\frac{u}{\bar{u}}$ is a root of unity for any unit $u \in \mathcal{O}_{n}^{\times}$where \mathcal{O}_{n} denotes the ring of integers in the nth cyclotomic field. Show moreover, that whenever $n=p^{k}$ for some odd prime p then $\frac{u}{\bar{u}}$ is even a p^{k} th root of unity. In particular, we have a group homomorphism

$$
\begin{aligned}
\mathcal{O}_{p^{k}}^{\times} & \rightarrow \mu_{p^{k}} \\
u & \mapsto \frac{u}{\bar{u}} .
\end{aligned}
$$

2. (3 points) Let p be an odd prime and denote by $\mathcal{O}_{p^{k}}$ the ring of integers in the p^{k} th cyclotomic field. Show that any unit $u \in \mathcal{O}_{p^{k}}^{\times}$can be written as $u=\zeta v$ where ζ is a p^{k} th root of unity and $v \in \mathbb{Z}[\zeta] \cap \mathbb{R}$ is real.
Assume from now on that $p \nmid x y z$ are integers with $x^{p}+y^{p}=z^{p}$ ($2<p$ prime).
3. ($1+1$ pont) Reducing modulo 9 show $p \neq 3$. Reducing modulo 25 show $p \neq 5$.

Assume from now on $p>5$ and let ζ be a fixed primitive p th root of 1 .
4. (1 pont) Reduce to the case when the numbers x, y, z are pairwise coprime and $p \nmid x-y$.
5. (2 points) Show that the elements $x+y, x+y \zeta, \ldots, x+y \zeta^{p-1}$ are pairwise coprime in \mathcal{O}_{p}.
6. (2 points) Show that for any $\alpha \in \mathcal{O}_{p}$ we have $\alpha^{p} \in \mathbb{Z}+p \mathcal{O}_{p}$ (ie. there exists $a \in \mathbb{Z}$ such that $a-\alpha^{p}$ is divisible by p).
7. (2 points) Let $\alpha=a_{0}+a_{1} \zeta+\ldots a_{p-1} \zeta^{p-1}$ where $a_{i} \in \mathbb{Z}(i=0, \ldots, p-1)$ and $a_{i}=0$ for at least one $i \in\{0, \ldots, p-1\}$. Verify that whenever α lies in $n \mathcal{O}_{p}$ for some $n \in \mathbb{Z}$ then we have $n \mid a_{i}$ for all $i=0, \ldots, p-1$.
8. (2 points) Show that if p does not divide the class number of a number field K and A^{p} is principal for some ideal $A \triangleleft \mathcal{O}_{K}$ then in fact A is principal.
9. (3 points) Assume that p does not divide the class number of \mathcal{O}_{p}. Show that Fermat's equation $x^{p}+y^{p}=z^{p}$ does not admit a solution with $p \nmid x y z$. Hint: write the equation as $\prod_{j=0}^{p-1}\left(x+y \zeta^{j}\right)=(z)^{p}$. Factorize both sides in \mathcal{O}_{p} as a product of prime ideals. Note that we have $x+\zeta^{j} y=u_{j} \alpha_{j}^{p}$ for some unit $u_{j} \in \mathcal{O}_{p}^{\times}$and $\alpha_{j} \in \mathcal{O}(j=0, \ldots, p-1)$. Now apply problem 6 to α_{1}, and problem 2 to u_{1} in order to find an integer $r \in \mathbb{Z}$ such that $x+\zeta y \equiv \zeta^{r} v a(\bmod p)$ where $v \in \mathbb{R}$ and $a \in \mathbb{Z}$. Conjugate the last congruence to deduce $p \mid x+\zeta y-\zeta^{2 r} x-\zeta^{2 r-1} y$. Obtain a contradiction using problem 7.

