Algebraic Number Theory

Problem sheet 7

to be handed in until 15th November 2018

The following problems build somewhat on each other. The goal here is to show the first case (ie. assuming $p \nmid xyz$) of Fermat's Last Theorem $(x^p + y^p = z^p \Rightarrow xyz = 0)$ for regular (ie. p does not divide the class number of $\mathbb{Q}(\mu_p)$) primes.

1. (3 points) Verify that $\frac{u}{\overline{u}}$ is a root of unity for any unit $u \in \mathcal{O}_n^{\times}$ where \mathcal{O}_n denotes the ring of integers in the *n*th cyclotomic field. Show moreover, that whenever $n = p^k$ for some odd prime p then $\frac{u}{\overline{u}}$ is even a p^k th root of unity. In particular, we have a group homomorphism

$$\begin{array}{rccc} \mathcal{O}_{p^k}^{\times} & \to & \mu_{p^k} \\ u & \mapsto & \frac{u}{\overline{u}} \end{array}.$$

2. (3 points) Let p be an odd prime and denote by \mathcal{O}_{p^k} the ring of integers in the p^k th cyclotomic field. Show that any unit $u \in \mathcal{O}_{p^k}^{\times}$ can be written as $u = \zeta v$ where ζ is a p^k th root of unity and $v \in \mathbb{Z}[\zeta] \cap \mathbb{R}$ is real.

Assume from now on that $p \nmid xyz$ are integers with $x^p + y^p = z^p$ (2 < p prime).

- 3. (1+1 pont) Reducing modulo 9 show $p \neq 3$. Reducing modulo 25 show $p \neq 5$. Assume from now on p > 5 and let ζ be a fixed primitive pth root of 1.
- 4. (1 pont) Reduce to the case when the numbers x, y, z are pairwise coprime and $p \nmid x y$.
- 5. (2 points) Show that the elements $x + y, x + y\zeta, \ldots, x + y\zeta^{p-1}$ are pairwise coprime in \mathcal{O}_p .
- 6. (2 points) Show that for any $\alpha \in \mathcal{O}_p$ we have $\alpha^p \in \mathbb{Z} + p\mathcal{O}_p$ (i.e. there exists $a \in \mathbb{Z}$ such that $a \alpha^p$ is divisible by p).
- 7. (2 points) Let $\alpha = a_0 + a_1 \zeta + \ldots a_{p-1} \zeta^{p-1}$ where $a_i \in \mathbb{Z}$ $(i = 0, \ldots, p-1)$ and $a_i = 0$ for at least one $i \in \{0, \ldots, p-1\}$. Verify that whenever α lies in $n\mathcal{O}_p$ for some $n \in \mathbb{Z}$ then we have $n \mid a_i$ for all $i = 0, \ldots, p-1$.
- 8. (2 points) Show that if p does not divide the class number of a number field K and A^p is principal for some ideal $A \triangleleft \mathcal{O}_K$ then in fact A is principal.

9. (3 points) Assume that p does not divide the class number of \mathcal{O}_p . Show that Fermat's equation $x^p + y^p = z^p$ does not admit a solution with $p \nmid xyz$. Hint: write the equation as $\prod_{j=0}^{p-1} (x + y\zeta^j) = (z)^p$. Factorize both sides in \mathcal{O}_p as a product of prime ideals. Note that we have $x + \zeta^j y = u_j \alpha_j^p$ for some unit $u_j \in \mathcal{O}_p^{\times}$ and $\alpha_j \in \mathcal{O}$ $(j = 0, \ldots, p - 1)$. Now apply problem 6 to α_1 , and problem 2 to u_1 in order to find an integer $r \in \mathbb{Z}$ such that $x + \zeta y \equiv \zeta^r va \pmod{p}$ where $v \in \mathbb{R}$ and $a \in \mathbb{Z}$. Conjugate the last congruence to deduce $p \mid x + \zeta y - \zeta^{2r} x - \zeta^{2r-1} y$. Obtain a contradiction using problem 7.