Algebraic Number Theory

Problem sheet 6

to be handed in until 8th November 2018

- 1. (3 points) Let L/K be a finite Galois extension of number fields (ie. K/\mathbb{Q} finite) such that $\operatorname{Gal}(L/K)$ is *not* cyclic. Show that there are at most finitely many primes $\mathfrak{p} \triangleleft \mathcal{O}_K$ having only one prime divisor in L.
- 2. (3 points) Let K/\mathbb{Q} be a finite Galois extension with nonabelian Galois group. Verify that no rational prime p remains prime in \mathcal{O}_K .
- 3. (3 points) Let L/K be a finite extension of number fields and let $L \leq F$ be the Galois closure. Set $G := \operatorname{Gal}(F/K)$, $H = \operatorname{Gal}(F/L)$, $G_P \leq G$ the decomposition subgroup of a prime $P \lhd \mathcal{O}_F$ above $\mathfrak{p} \lhd \mathcal{O}_K$. Construct a natural bijection between the primes in Ldividing \mathfrak{p} and the double cosets $H \setminus G/G_P$. Use this to show that \mathfrak{p} splits completely in L if and only if it does in F. (+3points)
- 4. (5 points) Let K/\mathbb{Q} be an arbitrary finite extension. Show that there are infinitely many primes p that split completely in \mathcal{O}_K .
- 5. (5 points) Let L/K be a not necessarily Galois solvable extension of number fields of prime degree p (ie. the Galois closure of L has solvable Galois group over K). Assume further that a prime $\mathfrak{p} \triangleleft \mathcal{O}_K$ does not ramify in L and has at least two prime divisors in L of inertia degree 1. Show that \mathfrak{p} splits completely in L. (Hint: You may use the theorem of Galois stating that if G is a solvable transitive permutation group of degree p then any nontrivial element of G has at most one fixed point.)
- 6. (4 points) Let A be a finite abelian group. Show that there exists a finite Galois extension L/\mathbb{Q} with $\operatorname{Gal}(L/\mathbb{Q}) \cong A$. (The statement is true for any solvable group by Shafarevich's theorem but is open in general (inverse Galois problem).)
- 7. (3 points) Let n be odd. Describe all the quadratic extensions of \mathbb{Q} contained in $\mathbb{Q}(\zeta_n)$.
- 8. (3 points) Let $d \in \mathbb{Z}$ be square-free. Show that there exists a positive integer n such that $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{Q}(\zeta_n)$.
- 9. (3 points) Let $q \geq 3$. Verify that the quadratic fields contained in $\mathbb{Q}(\zeta_{2^q})$ are the following: $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i\sqrt{2}).$