Algebraic Number Theory

5th Problem sheet

to be handed in until 25th October 2018

- 1. (a) (2 points) Show that an odd prime ramifies in $\mathbb{Q}(\sqrt{d})$ if and only if $p \mid d$ (here d is square-free). Moreover, p is inert (resp. splits) if $\left(\frac{d}{p}\right) = -1$ (resp. $\left(\frac{d}{p}\right) = 1$).
 - (b) (2 points) What if p = 2?
- 2. Decompose 7 and 11 in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ (1 point each) and of $\mathbb{Q}(\alpha)$ (2+2 points) where $\alpha^3 \alpha 4 = 0$ (You may use the description of the rings of integers).
- 3. (3 points) Let f_n be the *n*th element of the Fibonacci sequence $(f_0 = 0, f_1 = 1, f_{n+1} = f_n + f_{n-1})$. Verify that $f_p \equiv \left(\frac{p}{5}\right) \pmod{p}$ if $p \neq 2, 5$ is a prime.
- 4. (2 points) Let $I, J \triangleleft A$ ideals in a Dedekind domain A and let B be the integral closure of A in a finite separable extension L/K where K is the residue field of A. Show that $I = IB \cap A$ and $I \mid J \Leftrightarrow IB \mid JB$.
- 5. (3 points) Give an example of finite extensions $\mathbb{Q} \leq K_1, K_2$ and a prime p such that p ramifies completely in both K_1 and K_2 (ie. $r = 1 = f_1$), but not in the composite K_1K_2 . (Hint: You may choose quadratic extensions.)
- 6. (a) (3 points) Assume $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$ where K/\mathbb{Q} is a finite extension and let $p \in \mathbb{Z}$ be a prime. Show that p can only be divisible by at most p prime ideals $\mathfrak{p}_i \triangleleft \mathcal{O}_K$ with $f_i = 1$ (ie. $\mathcal{O}_K/\mathfrak{p}_i \cong \mathbb{F}_p$).
 - (b) (2 points) Verify that the prime 3 splits completely in $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$, so in particular there is no $\alpha \in K$ with $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
 - (c) (3 points) Find an integer $0 < N \in \mathbb{Z}$ and a suitable element $\alpha \in \mathcal{O}_K$ such that $\mathcal{O}_K[1/N] = \mathbb{Z}[1/N][\alpha]$ and factorize each rational prime $p \mid N$ in \mathcal{O}_K .
- 7. (4 points) Let $\mathbb{Q} \leq K$ be a finite extension. Assume that a prime $\mathfrak{p} \triangleleft \mathcal{O}_K$ splits completely in both finite extensions $(K \leq)L$ and $(K \leq)L'$. Show that it also splits completely in the composite LL'.
- 8. (3 points) Let $\mathbb{Q} \leq K \leq L$ be finite extensions and let $K \leq L \leq F$ be the Galois closure of the extension L/K. Show that a prime $\mathfrak{p} \triangleleft \mathcal{O}_K$ splits completely in L if and only if it splits completely in F.
- 9. (3 points) Show that the extension $\mathbb{Q}(\sqrt{-1},\sqrt{-5})/\mathbb{Q}(\sqrt{-5})$ is unramified everywhere.