# Algebraic Number Theory 

Problem Sheet 4

to be handed in on 18th October 2018.

1. (2 points) Let $R$ and $R^{\prime}$ be integral domains and $0 \notin S \subset R$ be a multiplicatively closed subset. Assume that $\varphi: R \rightarrow R^{\prime}$ is a ring homomorphism sending $S$ to $\varphi(S) \subseteq R^{\prime \times}$. Show that $\varphi$ extends uniquely to a ring homomorphism $\tilde{\varphi}: R S^{-1} \rightarrow R^{\prime}$.
2. (3 points) Let $R$ be an integral domain and $0 \notin S \subset R$ be a multiplicatively closed subset. Show that $R S^{-1}$ is flat as an $R$-module, ie. $R S^{-1} \otimes_{R}$. is exact.
3. (3 points) Let $R$ be an integral domain and $f: M \rightarrow N$ an $R$-homomorphism of $R$ modules $M, N$. Prove that the following are equivalent:
(i) $f$ is injective (resp. surjective);
(ii) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow N_{\mathfrak{p}}$ is injective (resp. surjective) for all prime ideals $\mathfrak{p} \triangleleft R$;
(iii) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is injective (resp. surjective) for all maximal ideals $\mathfrak{m} \triangleleft R$.

Here $M_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} M, M_{\mathfrak{m}}=R_{\mathfrak{m}} \otimes_{R} M, N_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} N$, and $N_{\mathfrak{m}}=R_{\mathfrak{m}} \otimes_{R} N$ are the localizations.
4. (3 points) Let $R$ be an integral domain and $0 \notin S \subset R$ be a multiplicatively closed subset. Assume that $R S^{-1}$ is integral over $R$ (ie. each element is integral). Show $R S^{-1}=R$.
5. (3 points) (Nakayama's Lemma) Let $R$ be a local ring with maximal ideal $\mathfrak{m} \triangleleft R$ and $M$ be a finitely generated $R$-module with a given submodule $N \leq M$ such that $M=$ $N+\mathfrak{m} M$. Show $M=N$.
6. (3 points) Let $K$ be a field and $v: K^{\times} \rightarrow \mathbb{Z}$ be a surjective group homomorphism. Put $v(0)=\infty$ and assume $v(x+y) \geq \min (v(x), v(y))$. Show that $\mathcal{O}:=\{\alpha \in K \mid v(\alpha) \geq 0\}$ is a DVR.
7. (3 points) Show that a noetherian integral domain is a DVR if and only if it is integrally closed and it has a unique nonzero prime ideal.
8. (3 points) Let $\mathcal{O}$ be a Dedekind domain and $k$ be a positive integer. Let $\mathfrak{p}_{i} \triangleleft \mathcal{O}$ be a prime ideal, $x_{i} \in K$ ( $K$ being the field of fractions), and $n_{i} \in \mathbb{Z}$ for $1 \leq i \leq k$. Verify that there exists an $x \in K$ such that $v_{\mathfrak{p}_{i}}\left(x-x_{i}\right) \geq n_{i}(i=1, \ldots, k)$ and $v_{\mathfrak{p}}(x) \geq 0$ for all primes $\mathfrak{p} \neq \mathfrak{p}_{i}$.
9. Let $K / \mathbb{Q}$ be a finite extension with ring of integers $\mathcal{O}_{K}$. Further let $S$ be a finite set of nonzero prime ideals in $\mathcal{O}_{K}$ and $X=\operatorname{Spec}\left(\mathcal{O}_{K}\right) \backslash S$.
(a) (exactness in the middle: 2 points each, exactness at each end 1 point) Verify that the sequence

$$
1 \rightarrow \mathcal{O}^{\times} \rightarrow \mathcal{O}(X)^{\times} \rightarrow \bigoplus_{\mathfrak{p} \in \operatorname{Spec}(\mathcal{O}) \backslash X} K^{\times} / \mathcal{O}_{\mathfrak{p}}^{\times} \rightarrow C l(\mathcal{O}) \rightarrow C l(\mathcal{O}(X)) \rightarrow 1
$$

is exact (part of the exercise to construct the maps). Further we have $K^{\times} / \mathcal{O}_{\mathfrak{p}}^{\times} \cong \mathbb{Z}$ for all $0 \neq \mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$ primes (1 point).
(b) (2 points) Show that $C l\left(\mathcal{O}_{K}(X)\right)$ is finite. Moreover, we have $\mathcal{O}_{K}(X)^{\times} \cong \mu(K) \times$ $\mathbb{Z}^{|S|+r+s-1}$ where $r$ (resp. $s$ ) is the number of real (resp. pairs of complex) embeddings.
10. (3 points) (Newton polygon) Let $\mathcal{O}$ be a DVR with field of fractions $K$ and valuation $v: K^{\times} \rightarrow \mathbb{Z}$. The Newton polygon of a polynomial $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in K[x]$ of degree $n$ is defined as the lower convex hull of the points $\left(-i, v\left(a_{i}\right)\right)$ on the plane (ie. it is a convex broken line connecting $\left(-n, v\left(a_{n}\right)\right)$ and $\left(0, v\left(a_{0}\right)\right)$ with vertices some of $\left(-i, v\left(a_{i}\right)\right)$ such that none of these is below the broken line). Further, put $S(f)$ for the multiset of slopes of the Newton polygon: ie. $S(f)$ has exactly $n$ elements in which the multiplicity of a rational number $s$ is the length of the projection of the segment of the Newton polygon with slope $s$ to the $x$-axis. Show $S(f g)=S(f) \cup S(g)$. In particular, if the Newton polygon of a polynomial $f(x) \in K[x]$ consists of a single segment not containing any lattice point apart from the endpoints then $f$ is irreducible.

