Algebraic Number Theory

Problem sheet 3

to be handed in on 11th October 2018

1. (3 points) Verify the Chinese Remainder Theorem for Dedekind domains, i.e. if $A \triangleleft \mathcal{O}$ is an ideal with decomposition $A = P_1^{\nu_1} \dots P_t^{\nu_t}$ into the product of prime ideals then we have

$$\mathcal{O}/A \cong \bigoplus_{i=1}^t \mathcal{O}/P_i^{\nu_i}$$

- 2. (3 points) Show that a lattice $\Gamma \subset V$ is full if and only if V/Γ is compact.
- 3. (2 points) Let $L_i(x_1, \ldots, x_n) = \sum_{j=1}^n a_{ij}x_j$ $(i = 1, \ldots, n)$ be real homogeneous polynomials of degree 1 such that $\det((a_{ij}))_{ij} \neq 0$ and let c_1, \ldots, c_n positive real numbers with $c_1 \ldots c_n > |\det((a_{ij}))_{ij}|$. Prove that there exist integers $m_1, \ldots, m_n \in \mathbb{Z}$ (not all zero) such that $|L_i(m_1, \ldots, m_n)| < c_i$ $(i = 1, \ldots, n)$.
- 4. (2+2 points) Verify that the map

$$\mathbb{C} \otimes_{\mathbb{Q}} K \to K_{\mathbb{C}}
z \otimes \alpha \mapsto z \cdot (j\alpha)$$

is an isomorphism of rings. Show, moreover, that its restriction to $\mathbb{R} \otimes_{\mathbb{Q}} K$ induces an isomorphism between $K \otimes_{\mathbb{Q}} \mathbb{R}$ and $K_{\mathbb{R}}$.

- 5. (1 point each) Show that the rings of integers of quadratic extensions of \mathbb{Q} with discriminant 5, 8, 11, -3, -4, -7, -8, and -11 are all unique factorisation domains.
- 6. (a) (4 points) Let $X_t := \{z \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| < t\}$ for any positive real number t. Show that $\operatorname{vol}(X_t) = 2^r \pi^s \frac{t^n}{n!}$.
 - (b) (4 points) Prove that $|d_K|^{1/2} \ge \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{n/2}$ for any finite extension K/\mathbb{Q} of degree n. (Hint: Choose t so that $\operatorname{vol}(X_t) > 2^n \operatorname{vol}(\Gamma)$ where $\Gamma = j(\mathcal{O}_K) \subset K_{\mathbb{R}}$. Apply the inequality between arithmetic and geometric means on the numbers $|\tau(\alpha)|$ where $0 \ne \alpha \in \mathcal{O}_K$ is the element provided by Minkowski's Lattice Point Theorem satisfying $j(\alpha) \in X_t$. Finally, note that $1 \le |N_{K/\mathbb{Q}}(\alpha)|$.)
 - (c) (1 points) Show that $|d_K|$ tends to infinity as long as so does $|K : \mathbb{Q}|$. Moreover, we have $d_K > 1$ for any nontrivial extension K/\mathbb{Q} .
- 7. (a) (3 points) Let $A \triangleleft \mathcal{O}_K$ be an ideal whose class in the ideal class group has order m (ie. $A^m = (\alpha)$ is principal). Prove that $A\mathcal{O}_L = (\beta)$ where $L = K(\beta)$ with $\beta^m = \alpha$.

- (b) (1 point) Show that for any finite extension K/\mathbb{Q} there exists a finite extension L/K such that each ideal of \mathcal{O}_K becomes principal over L.
- (c) (2 points) Show that the ring Ω of all algebraic integers in \mathbb{C} is a *Bézout domain*, i.e. each finitely generated ideal is principal (but not noetherian).
- 8. (a) (3 points) Show that any finitely generated torsion-free module over a Bézout domain is free.
 - (b) (2 points) Verify that $\bigcup_{n=1}^{\infty} \mathbb{C}[[x^{1/n}]]$ is a Bézout domain.
- 9. The goal in this exercise is to compute the rank of \mathcal{O}_K^{\times} as an abelian group using a multiplicative version of Minkowski's theory.
 - (a) (3 points) Let $K_{\mathbb{C}}^{\times} = \prod_{\tau} \mathbb{C}^{\times}$ be the multiplicative group of $K_{\mathbb{C}}$ and $N \colon K_{\mathbb{C}}^{\times} \to \mathbb{C}^{\times}$ be the group homomorphism sending an element to the product of coordinates. Further, define the map $l := \log |\cdot| \colon K_{\mathbb{C}}^{\times} \to \prod_{\tau} \mathbb{R}$ coordinate-wise. Show that the kernel of $l \circ j \colon \mathcal{O}_{K}^{\times} \to \prod_{\tau} \mathbb{R}$ is the torsion subgroup of \mathcal{O}_{K}^{\times} , i.e. the group $\mu(K)$ of roots of unity in K.
 - (b) (2 points) Verify that $l \circ j(\alpha)$ is fixed by the complex conjugation on $\prod_{\tau} \mathbb{R}$ (that only permutes the maps τ) for any $\alpha \in \mathcal{O}_K^{\times}$. Show, moreover, that the sum of coordinates of $l \circ j(\alpha)$ equals 0.
 - (c) (5 points) Prove that $l \circ j(\mathcal{O}_K^{\times})$ is a full lattice in the subspace H where we put

$$H = \{ x_{\tau} \in \prod_{\tau} \mathbb{R} \mid \sum_{\tau} x_{\tau} = 0 \text{ and } x_{\sigma_k} = x_{\overline{\sigma_k}} \ (k = 1, \dots, s) \}$$

In particular, we have $\mathcal{O}_K \cong \mu(K) \times \mathbb{Z}^{r+s-1}$ as an abelian group.