Algebraic Nuber Theory

Problem Sheet 10

to be handed in until 6th December 2018

1. (2 points) Let K / \mathbb{Q}_{p} be a finite extension. Verify that the formal series $\log (1+x)=$ $x-\frac{x^{2}}{2}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\ldots$ converges on the maximal ideal of the valuation ring.
2. (3 points) Determine the radius of (p-adic) convergence of the series $\exp (x)=1+x+$ $\cdots+\frac{x^{n}}{n!}+\ldots$ in finite extensions K / \mathbb{Q}_{p}.
3. (3 points) Let K / \mathbb{Q}_{p} be a finite extension with absolute ramification index e and maximal ideal \mathfrak{p}. Verify that exp: $\mathfrak{p}^{n} \rightarrow U^{(n)}=1+\mathfrak{p}^{n}$ and $\log : U^{(n)} \rightarrow \mathfrak{p}^{n}$ are inverse isomorphisms between the additive group \mathfrak{p}^{n} and the multiplicative group $U^{(n)}$ if $n>\frac{e}{p-1}$. In particular, $U^{(n)}$ is torsion free if $n>\frac{e}{p-1}$.
4. (3 points) Let $\left|K: \mathbb{Q}_{p}\right|=d, \pi \in K$ be the prime element and put $q=\mathcal{O}_{K} /(\pi)$. Show that we have $K^{\times} \cong \pi^{\mathbb{Z}} \oplus Z_{q-1} \oplus Z_{p^{a}} \oplus \mathbb{Z}_{p}^{d}$ for some integer $a \geq 0$.
5. (2 points) Let $z \in \mathbb{Z}_{p}$ be fixed. Show that the binomial series $(1+x)^{z}=\sum_{n=0}^{\infty}\binom{z}{n} x^{n}$ converges for $v_{p}(x)>\frac{1}{p-1}$. Moreover, in this case we have $(1+x)^{z}=\exp (z \log (1+x))$.
6. (3 points) Let K / \mathbb{Q}_{p} be finite. Prove that any finite index subgroup of K^{\times}is open (hence closed).
7. (3 points) Let K / \mathbb{Q}_{p} be finite, $\pi \in K$ be a prime, and v_{π} the normalized valuation (so that $v_{\pi}(\pi)=1$). Show that \mathcal{O}_{K} is compact, in particular K is a locally compact abelian group. So there exists a translation-invariant Haar measure $d x$ which is unique if we assume $\int_{\mathcal{O}_{K}} d x=1$. Verify $v_{\pi}(a)=\int_{a \mathcal{O}_{K}} d x$. Further show that $\frac{d x}{|x| \pi}$ is a translationinvariant Haar measure on the group K^{\times}.
8. (3 points) Let K / \mathbb{Q}_{p} be finite. Show that the slopes of the Newton polygon of a polynomial $f(x) \in K[x]$ are exactly $\left\{v_{\pi}\left(\alpha_{i}\right) \mid 1 \leq i \leq n\right\}$ (with muliplicities) where $\pi \in K$ is a prime and f decomposes as $f(x)=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ over \bar{K} (the Newton-polygon is also constructed using the π-adic valuation).
9. (3 points) Let K / \mathbb{Q}_{p} be finite and $f(x) \in K[x]$ be an irreducible polynomial. Show that the Newton polygon of f consists of a single segment. Give an example that it may contain a lattice point apart from the two endpoints.
10. (3 points) Let R be a commutative ring with identity. A (one-parameter) commutative formal group law is a formal power series $F(X, Y) \in R[[X, Y]]$ in two variables satisfying
(i) $F(X, Y)=X+Y+$ terms of higher degree;
(ii) $F(X, F(Y, Z))=F(F(X, Y), Z)$ (associative);
(iii) there exists a power series $\iota_{F}(X) \in X R[[X]]$ such that $F\left(X, \iota_{F}(X)\right)=0$ (inverse);
(iv) $F(X, Y)=F(Y, X)$ (commutative).

Now assume $R=\mathcal{O}_{K}$ for some complete non-archimedean field K with maximal ideal \mathcal{M}_{K}. Show that \mathcal{M}_{K} is an abelian group with respect to the operation $a+_{F} b:=F(a, b)$. Further verify that power series $F(X, Y)=X+Y$ and $F(X, Y)=X+Y+X Y$ are commutative formal group laws. Describe $\left(\mathcal{M}_{K},+_{F}\right)$ in this case (upto isomorphism)?
11. (3 points) A homomorphism from the formal group F to G is a power series $h(T) \in$ $T R[[T]]$ such that $h(F(X, Y))=G(h(X), h(Y))$. Show that in case $F=G$ the set $\operatorname{End}(F):=\operatorname{Hom}(F, F)$ is a ring with respect to the addition $+_{F}$ and multiplication given by composition. Further verify that $h_{n}(T)=(T+1)^{n}-1$ is an endomorphism of the formal group law $F(X, Y)=X+Y+X Y$ for all $n \geq 1$.
12. (4 points) From now on assume $R=\mathcal{O}_{K}$ where K / \mathbb{Q}_{p} is a finite extension and $\pi \in \mathcal{O}_{K}$ is a prime. Let \mathcal{F}_{π} be the set of power series $f(X) \in \mathcal{O}_{K}[[X]]$ such that $f(X)=$ $\pi X+$ terms of higher degree and $f(X) \equiv X^{q}(\bmod \pi)$ where $q=p^{f}$ is the cardinality of the residue field $k=\mathcal{O}_{K} /(\pi)$. Let $f, g \in \mathcal{F}_{\pi}$ and $\phi_{1}\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{O}_{K}\left[X_{1}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree 1. Verify that there exists a unique power series $\phi\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{O}_{K}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ such that $\phi\left(X_{1}, \ldots, X_{n}\right)=\phi_{1}\left(X_{1}, \ldots, X_{n}\right)+$ terms of higher degree and $f\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right)=\phi\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)$.
13. (3 points) Prove that for all $f \in \mathcal{F}_{\pi}$ there exists a unique formal group law $F_{f}(X, Y) \in$ $\mathcal{O}_{K}[[X, Y]]$ such that f is an endomorphism of F_{f}. (These are called Lubin-Tate formal group laws.)
14. (3 points) Let $a \in \mathcal{O}_{K}$ and $f, g \in \mathcal{F}_{\pi}$. Show that there exists a unique power series $[a]_{g, f}(T) \in T \mathcal{O}_{K}[[T]]$ such that $[a]_{g, f}(T)=a T+$ terms of higher degree and $[a]_{g, f} \circ f=$ $g \circ[a]_{g, f}$. Moreover, $[a]_{g, f}$ is a homomorphism from F_{f} to F_{g}. In particular F_{f} and F_{g} are isomorphic.
15. (2 points) Verify that the map $\mathcal{O}_{K} \rightarrow \operatorname{End}\left(F_{f}\right), a \mapsto[a]_{f}:=[a]_{f, f}$ is an injective ring homomorphism with $[\pi]_{f}=f$. (This makes F_{f} a formal \mathcal{O}_{K}-module.)
16. (3 points) Let $f \in \mathcal{F}_{\pi}$ be arbitrary (for the sake of simplicity we may take the polynomial $f(T)=\pi T+T^{q}$ by Problem 14) and put Λ_{n} for the set of roots of the polynomial $f^{(n)}=\underbrace{f \circ \cdots \circ f}_{n}$ in an algebraic closure of \mathbb{Q}_{p}. Verify that Λ_{n} is an \mathcal{O}_{K}-module of cardinality q^{n} with respect to the addition $+_{F_{f}}$ and multiplication $a \cdot{ }_{F_{f}} \lambda:=[a]_{f}(\lambda)$ $\left(a \in \mathcal{O}_{K}, \lambda \in \Lambda_{n}\right)$. Further show $\Lambda_{n} \cong \mathcal{O}_{K} /\left(\pi^{n}\right)$ as \mathcal{O}_{K}-modules.
17. (4 points) Let $K_{\pi, n}:=K\left(\Lambda_{n}\right)$ be the splitting field of the polynomial $f^{(n)}$ over K. Verify $\operatorname{Gal}\left(K_{\pi, n} / K\right) \cong\left(\mathcal{O}_{K} /\left(\pi^{n}\right)\right)^{\times}$and that $K_{\pi, n} / K$ is totally ramified. Further show that $K_{\pi, n}$ does not depend on the choice of $f \in \mathcal{F}_{\pi}$ and π is the norm of a suitable element in $K_{\pi, n}$.

