Algebraic Number Theory

Problem sheet 1

due on 19th September 2018

- 1. (2 points) Using the 8th roots of unity and the proof of quadratic reciprocity find a formula for the value of the Legendre symbol $\left(\frac{2}{n}\right)$.
- 2. (2+2 points) Prove that unique factorization domains (eg. \mathbb{Z} and K[x] where K is a field) are integrally closed, but $\mathbb{Z}[\sqrt{5}]$ is not. (Hint: Gauss' lemma.)
- 3. (3+3 points) Determine the integral closure of \mathbb{Z} in $\mathbb{Q}[x]/(x^3-2)$ and in $\mathbb{Q}[x]/(x^3-x-4)$.
- 4. (3 points) Let $A \subseteq B$ integral domains and let $\beta \in B$ be an invertible element. Show that each element in $A[\beta] \cap A[\beta^{-1}]$ is integral over A. (Hint: For $\alpha \in A[\beta] \cap A[\beta^{-1}]$ find a finitely generated A-submodule $M \subseteq B$ such that $\alpha M \subseteq M$.)
- 5. (1+2+2 points) The goal here is to show that whenever R is an integrally closed domain then so is R[x].
 - (a) Reduce the statement to showing that R[x] is integrally closed in K[x] where K is the field of fractions of R. (Hint: K[x] is contained in the field of fractions of R[x]and it is integrally closed.)
 - (b) Let $f, g \in K[x]$ be monic polynomials such that fg lies in R[x]. Show that both f and g are in R[x]. (Hint: write both polynomials as a product of linear factors over a bigger field.)
 - (c) If $f \in K[x]$ is the root of a monic polynomial of degree k with coefficients in R[x]then $f + x^N$ is also the root of another monic polynomial $g_N \in R[x][y]$ of degree k (in the variable y). Increase N so that the constant term of g_N can be written as a product of two monic polynomials (in R[x]) one of which is $f + x^N$.
- 6. (1 point) What is the trace and the norm of $1 + \sqrt{2}$ in the extension $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$?
- 7. (2 points) Consider the extension $\mathbb{Q}(i)/\mathbb{Q}$. This has a Galois group isomorphic to Z_2 , in particular it is cyclic. What is the norm of an element of the form a + bi? What does Hilbert 90 tell us in this special case on Pythgorian triples?
- 8. (3 points) Let K be a field containing a primitive nth root of unity and L/K be a Galois extension with Galois group $\operatorname{Gal}(L/K) \cong Z_n$. Show that $L = K(\sqrt[n]{\alpha})$ for some α in K. (Hint: Use Hilbert's Theorem 90.)

- 9. (3 points) Let $f(x) \in \mathbb{Z}[x]$ be an irreducible monic polynomial. Assume that the Galois group of the splitting field of f over \mathbb{Q} is abelian and there is an α in \mathbb{C} such that $f(\alpha) = 0$ and $|\alpha| = 1$. Show that all the other roots of f (in \mathbb{C}) have absolute value 1.
- 10. (4 points) Let α be an algebraic integer whose all Galois conjugates have absolute value 1. Prove that α is a root of unity.
- 11. (2+2 points) Let $K \leq L \leq M$ be finite separable extensions. Show that $N_{M/K} = N_{L/K} \circ N_{M/L}$. What if the extensions are not separable?
- 12. (3 points) Let L/K be a non-separable extension. Show that $Tr_{L/K}$ is identically 0. (Hint: using the transitivity of the trace reduce the problem to the case when you are adjoining the *p*th root of an element to a field K of characteristic *p*.)
- 13. (1+2+2+2+2 points) Let L/K be a Galois extension. The goal of this problem is to prove the normal basis theorem: There exists an $\gamma \in L$ such that the elements $\{\sigma(\gamma) \mid \sigma \in \text{Gal}(L/K)\}$ are linearly independent over K i.e. they form a basis of L as a K-vector space (bases of this form are called *normal bases*).
 - (a) Let $f(x) \in K[x]$ be a separable monic polynomial that splits over L as a product $f(x) = \prod_{i=1}^{n} (x \alpha_i)$. Put $g_i(x) := \frac{f(x)}{f'(\alpha_i)(x \alpha_i)} \in L[x]$. Verify (i) $\sum_{i=1}^{n} g_i(x) = 1$ (partial fraction decomposition of 1/f(x)) and (ii) $g_i(x)g_j(x) \equiv \begin{cases} 0 \mod (f(x)) & \text{if } i \neq j \\ g_i(x) \mod (f(x)) & \text{if } i = j \end{cases}$.
 - (b) Let L/K be a Galois extension as above and pick α such that $L = K(\alpha)$ and denote by $f \in K[x]$ the minimal polynomial of α . Put $\operatorname{Gal}(L/K) = \{ \operatorname{id} = \sigma_1, \ldots, \sigma_n \}$ and $\alpha_i = \sigma_i(\alpha) \in L$. Let $A \in L[x]^{n \times n}$ be the matrix with *j*th entry in the *i*th row being $\sigma_i(\sigma_j(g_1(x))) \in L[x]$. Using part (a) show that $A^T A \equiv I \mod (f(x))$ (where *I* is the identity matrix).
 - (c) Assume K is infinite. Using part (b) show that there is a $\beta \in K$ with $\det(A(\beta)) = \det(\sigma_i \sigma_j(g_1(\beta)))_{i,j} \neq 0$. In particular, $\{\sigma_1(\gamma), \ldots, \sigma_n(\gamma)\}$ is a normal bases for $\gamma = g_1(\beta)$.
 - (d) Assume $K \cong \mathbb{F}_q$ is finite and let n = |L/K| be the degree. Use Dedekind's Lemma and the fact that $\operatorname{Gal}(L/K)$ is cyclic of order n generated by the Frobenius Frob_q to determine the minimal polynomial of $\operatorname{Frob}_q \colon L \to L$ as a K-linear map.
 - (e) Using the theorem of elementary divisors (or otherwise) show that $L \cong K[x]/(x^n-1)$ as modules over K[x] where x acts on L via Frob_q . Let $\gamma \in L$ be the element corresponding to $1 + (x^n 1)$ under this isomorphism.