Algebraic Number Theory

Problem sheet 2

23rd September 2015

1. (2 pont) Find an integral basis in the ring of integers in $\mathbb{Q}(\sqrt{d})$ for $d \in \mathbb{Z}$ squarefree.
2. (2 pont) Let \mathcal{O} be the ring of integers in $\mathbb{Q}(\sqrt{d})(d \in \mathbb{Z}$ squarefree) and $p \nmid 2 d$ be a prime number. Show that $p \mathcal{O}$ is a prime ideal if and only if the Legendre symbol $\left(\frac{d}{p}\right)$ equals -1 .
3. (3 pont) Prove that the ring $\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$ is not integrally closed.
4. (4 pont) Let K / \mathbb{Q} be a finite extension (ie. K is a number field) and d_{K} be the discriminant of K. Prove that $d_{K} \equiv 0,1(\bmod 4)$. (Hint: Consider the permanent of the matrix $\left(\left(\sigma_{i} \alpha_{j}\right)\right)$ (the permanent of a matrix is similar to the determinant but we take all the terms in the formula with positive sign)? Use the identity $(a-b)^{2}=(a+b)^{2}-4 a b$.)
5. (2 pont) Write $33+11 \sqrt{-7}$ as a product of irreducible elements in the ring of integers of $\mathbb{Q}(\sqrt{-7})$.
6. (3 pont) Show that a Dedekind domain with finitely many prime ideals is in fact a principal ideal domain.
7. $(3+3$ pont $)$
(i) Let \mathcal{O} be a Dedekind domain and $I \triangleleft \mathcal{O}$ be an ideal. Show that each ideal in \mathcal{O} / I is principal (ie. generated by one element).
(ii) Show that each ideal in a Dedekind domain is generated by at most two elements.
8. (5 pont) Let \mathcal{O} be an integral domain such that any ideal in \mathcal{O} can be uniquely written as a product of prime ideals. Show that \mathcal{O} is a Dedekind domain (ie. integrally closed, noetherian, and 1-dimensional).
9. (4 pont) Show that any ideal in a Dedekind domain is a projective module.
10. (3+3 pont) Let $f(x, y) \in \mathbb{C}[x, y]$ be an irreducible nonsingular polynomial (ie. $\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=$ (1) as an ideal in $\mathbb{C}[x, y])$. Show that $\mathbb{C}[x, y] /(f(x, y))$ is a Dedekind domain. What will be the class group if the zeros of f form an elliptic curve, ie. $f(x, y)=y^{2}-x^{3}-a x-b$ where $x^{3}+a x+b$ has no multiple roots? (Compare to Proble 3 where the curve is singular.)
