Algebraic Number Theory

Problem sheet 1

9th September 2015

1. (2 points) Let ε_{p} be a primitive p th root of unity. Verify the identity

$$
(S:=) \sum_{j=0}^{p-1} \varepsilon_{p}^{j^{2}}=1+2 \sum_{a \in \mathbb{F}_{p},\left(\frac{a}{p}\right)=1} \varepsilon_{p}^{a}=\sum_{j=0}^{p-1}\left(\frac{j}{p}\right) \varepsilon_{p}^{j} .
$$

Show, moreover, that we have $S^{2}=\left(\frac{-1}{p}\right) p$.
2. (2 points) Using the 8 th roots of unity and the proof of quadratic reciprocity find a formula for the value of the Legendre symbol $\left(\frac{2}{p}\right)$.
3. ($2+2$ points) Prove that unique factorization domains (eg. \mathbb{Z} and $K[x]$ where K is a field) are integrally closed, but $\mathbb{Z}[\sqrt{5}]$ is not. (Hint: Gauss' lemma.)
4. (3+3 points) Determine the integral closure of \mathbb{Z} in $\mathbb{Q}[x] /\left(x^{3}-2\right)$ and in $\mathbb{Q}[x] /\left(x^{3}-x-4\right)$.
5. (3 points) Let $A \subseteq B$ integral domains and let $\beta \in B$ be an invertible element. Show that each element in $A[\beta] \cap A\left[\beta^{-1}\right]$ is integral over A. (Hint: For $\alpha \in A[\beta] \cap A\left[\beta^{-1}\right]$ find a finitely generated A-submodule $M \subseteq B$ such that $\alpha M \subseteq M$.)
6. ($1+2+2$ points) The goal here is to show that whenever R is an integrally closed domain then so is $R[x]$.
(a) Reduce the statement to showing that $R[x]$ is integrally closed in $K[x]$ where K is the field of fractions of R. (Hint: $K[x]$ is contained in the field of fractions of $R[x]$ and it is integrally closed.)
(b) Let $f, g \in K[x]$ be monic polynomials such that $f g$ lies in $R[x]$. Show that both f and g are in $R[x]$. (Hint: write both polynomials as a product of linear factors over a bigger field.)
(c) If $f \in K[x]$ is the root of a monic polynomial of degree k with coefficients in $R[x]$ then $f+x^{N}$ is also the root of another monic polynomial $g_{N} \in R[x][y]$ of degree k (in the variable y). Increase N so that the constant term of g_{N} can be written as a product of two monic polynomials (in $R[x]$) one of which is $f+x^{N}$.
7. (1 point) What is the trace and the norm of $1+\sqrt{2}$ in the extension $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$?
8. (2 points) Consider the extension $\mathbb{Q}(i) / \mathbb{Q}$. This has a Galois group isomorphic to Z_{2}, in particular it is cyclic. What is the norm of an element of the form $a+b i$? What does Hilbert 90 tell us in this special case on Pythgorian triples?
9. (3 points) Let K be a field containing a primitive nth root of unity and L / K be a Galois extension with Galois group $\operatorname{Gal}(L / K) \cong Z_{n}$. Show that $L=K(\sqrt[n]{\alpha})$ for some α in K. (Hint: Use Hilbert's Theorem 90.)
10. (3 points) Let $f(x) \in \mathbb{Z}[x]$ be an irreducible monic polynomial. Assume that the Galois group of the splitting field of f over \mathbb{Q} is abelian and there is an α in \mathbb{C} such that $f(\alpha)=0$ and $|\alpha|=1$. Show that all the other roots of f (in \mathbb{C}) have absolute value 1 .
11. (4 points) Let α be an algebraic integer whose all Galois conjugates have absolute value 1. Prove that α is a root of unity.
12. ($2+2$ points) Let $K \leq L \leq M$ be finite separable extensions. Show that $N_{M / K}=$ $N_{L / K} \circ N_{M / L}$. What if the extensions are not separable?
13. (3 points) Let L / K be a non-separable extension. Show that $T r_{L / K}$ is identically 0 . (Hint: using the transitivity of the trace reduce the problem to the case when you are adjoining the p th root of an element to a field K of characteristic p.)
14. $(1+2+2+2+2$ points) Let L / K be a Galois extension. The goal of this problem is to prove the normal basis theorem: There exists an $\gamma \in L$ such that the elements $\{\sigma(\gamma) \mid \sigma \in \operatorname{Gal}(L / K)\}$ are linearly independent over K ie. they form a basis of L as a K-vector space (bases of this form are called normal bases).
(a) Let $f(x) \in K[x]$ be a separable monic polynomial that splits over L as a product $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$. Put $g_{i}(x):=\frac{f(x)}{f^{\prime}\left(\alpha_{i}\right)\left(x-\alpha_{i}\right)} \in L[x]$. Verify $(i) \sum_{i=1}^{n} g_{i}(x)=1$ (partial fraction decomposition of $1 / f(x)$) and
(ii) $g_{i}(x) g_{j}(x) \equiv \begin{cases}0 \bmod (f(x)) & \text { if } i \neq j \\ g_{i}(x) \bmod (f(x)) & \text { if } i=j .\end{cases}$
(b) Let L / K be a Galois extension as above and pick α such that $L=K(\alpha)$ and denote by $f \in K[x]$ the minimal polynomial of α. Put $\operatorname{Gal}(L / K)=\left\{\mathrm{id}=\sigma_{1}, \ldots, \sigma_{n}\right\}$ and $\alpha_{i}=\sigma_{i}(\alpha) \in L$. Let $A \in L[x]^{n \times n}$ be the matrix with j th entry in the i th row being $\sigma_{i}\left(\sigma_{j}\left(g_{1}(x)\right)\right) \in L[x]$. Using part (a) show that $A^{T} A \equiv I \bmod (f(x))$ (where I is the identity matrix).
(c) Assume K is infinite. Using part (b) show that there is a $\beta \in K$ with $\operatorname{det}(A(\beta))=$ $\operatorname{det}\left(\sigma_{i} \sigma_{j}\left(g_{1}(\beta)\right)\right)_{i, j} \neq 0$. In particular, $\left\{\sigma_{1}(\gamma), \ldots, \sigma_{n}(\gamma)\right\}$ is a normal bases for $\gamma=g_{1}(\beta)$.
(d) Assume $K \cong \mathbb{F}_{q}$ is finite and let $n=|L / K|$ be the degree. Use Dedekind's Lemma and the fact that $\operatorname{Gal}(L / K)$ is cyclic of order n generated by the Frobenius Frob_{q} to determine the minimal polynomial of $\mathrm{Frob}_{q}: L \rightarrow L$ as a K-linear map.
(e) Using the theorem of elementary divisors (or otherwise) show that $L \cong K[x] /\left(x^{n}-1\right)$ as modules over $K[x]$ where x acts on L via Frob_{q}. Let $\gamma \in L$ be the element corresponding to $1+\left(x^{n}-1\right)$ under this isomorphism.

