
p-adic Galois representations 6th June 2019 1 / 23

p-adic Galois representations

Gergely Zábrádi
Eötvös Loránd University, Budapest, Institute of Mathematics

zger@cs.elte.hu
Talk at Heidelberg

6th June 2019



L-functions in arithmetic geometry p-adic Galois representations 6th June 2019 2 / 23

Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry.

Simplest example: Riemann’s ζ-function

ζ(s) :=
∞∑
n=1

1
ns

=
∏

p prime

1
1− 1

ps
(Re(s) > 1)

Encoded arithmetic information:
Distribution of primes: zeros in the critical strip 0 < Re(s) < 1
Arithmetic of cyclotomic fields Q(µp): special values
ζ(−1), ζ(−3), . . . , ζ(2− p)  “p-adic ζ-function” by p-adic
interpolation

Need analytic continuation and functional equation!
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Elliptic curves

Let E be an elliptic curve defined over Q  L-function

L(E , s) :=
∏

p prime

1
PE ,p(p−s)

(Re(s) > 2)

PE ,p(T ) = 1− apT + pT 2 if E has good reduction at p
where #E (Fp) = PE ,p(1) = 1− ap + p .

Encoded arithmetic information:
Number of mod p points E (Fp)

Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) – weak form
L(E , 1) = 0 if and only if #E (Q) =∞.

Analytic continuation in this case: Taniyama–Shimura–Weil
conjecture (proven by Wiles and Taylor (1993)).
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Varieties  Galois representations

Let X be a smooth projective variety defined over Q and put
GQ := Gal(Q/Q). For any prime ` and integer i ≥ 0 we have an
action of GQ on the `-adic cohomology group

H i
et(XQ,Q`) :=

(
lim←−
r

H i
et(XQ,Z/`

rZ)

)
[`−1] .

Reason for finite coefficients:
H i
et(XQ,Z/`

rZ) ∼= H i
sing (X (C),Z/`rZ). Need to pass to

characteristic 0 in order to define L-functions `-adic
representations!

In the above examples:
X = {∗}, i = 0 trivial Galois representation.
X = E , i = 1  H1

et(EQ,Z/`
rZ) ∼= E [`r ](1).
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Galois representations  L-functions

Fix an embedding Q ↪→ Qp for any prime p (and also Q ↪→ C).
This defines an embedding GQp ↪→ GQ.

The structure of local
Galois groups is rather well-understood:

1→ Ip → GQp → GFp → 1

where GFp
∼= Ẑ is topologically generated by the (arithmetic)

Frobenius automorphism Frobp : x 7→ xp. Now if

ρ : GQ → GL(V )

is a global Galois-representation on a finite dimensional vectorspace
V over a field K of characteristic 0 (embedded into C) then we
defined the local polynomial at p as the characteristic polynomial

Pρ,p(T ) := det(id− T Frobp | V Ip) ∈ K [T ] .
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∼= Ẑ is topologically generated by the (arithmetic)

Frobenius automorphism Frobp : x 7→ xp.

Now if

ρ : GQ → GL(V )

is a global Galois-representation on a finite dimensional vectorspace
V over a field K of characteristic 0 (embedded into C) then we
defined the local polynomial at p as the characteristic polynomial

Pρ,p(T ) := det(id− T Frobp | V Ip) ∈ K [T ] .



L-functions in arithmetic geometry p-adic Galois representations 6th June 2019 5 / 23

Galois representations  L-functions

Fix an embedding Q ↪→ Qp for any prime p (and also Q ↪→ C).
This defines an embedding GQp ↪→ GQ. The structure of local
Galois groups is rather well-understood:

1→ Ip → GQp → GFp → 1

where GFp
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Galois representations  L-functions

The L-function attached to the Galois representation ρ is defined as

L(ρ, s) :=
∏

p prime

1
Pρ,p(p−s)

(Re(s)� 0) .

In case of X = {∗}, i = 0 this specializes to Riemann ζ and in case
X = E , i = 1 to the L-function of the elliptic curve as above.

Fundamental open questions in the theory:
Analytic continuation and functional equation  modularity
Which Galois representations arise from geometry, ie. as a
subquotient of the étale cohomology of a smooth projective
variety?

The above 2 questions are closely related.
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Geometric Galois representations

Fontaine–Mazur conjecture (1995)
An irred. `-adic Galois representation ρ : GQ → GLn(Q`) comes
from geometry if and only if the following two conditions hold:
(i) ρ is unramified (ie. ρ(Ip) = {1}) at all but finitely many primes

p.
(ii) ρ is de Rahm at the prime p = `.

The “only if” part of the above conjecture is known: (i) by
Grothendieck (note that in the case of elliptic curves those primes
ramify at which the curve has bad reduction: criterion of
Néron–Ogg–Shafarevich—in particular, there are finitely many).
Assertion (ii) (“p-adic de Rham comparison isomorphism”) was first
proven by Faltings and by Tsuji and reproven recently by Beilinson
(survey: Szamuely–Z) and by Scholze. We need to better
understand the case ` = p!
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Classical comparison isomorphism

Let X be a smooth projective variety over C. Classical Poincaré
lemma  

Hn
sing (X (C),C) = Hn

dR(X an,C)

where the right hand side is computed by the Hodge–to–de Rham
spectral sequence

Ep,q
1 := Hq(X an,Ωp

X an)⇒ Hp+q
dR (X an,C)

where Ωp
X an stands for the sheaf of holomorphic p-forms on the

analytic manifold X an.

Can we generalize this to other ground fields K?

Étale cohomology can be regarded as the analogue of singular
cohomology: they agree if K = C and the coefficients are
finite (or, after taking the limit, p-adic).
In case of algebraic de Rham cohomology coefficients lie in K !
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p-adic comparison isomorphism

So we take K = Qp. Associated to the algebraic de Rham complex

Ω•X : OX
d→ Ω1

X
d→ Ω2

X → · · ·

of sheaves (in the Zariski topology) of Kähler-differentials there is a
Hodge–to–de Rham spectral sequence

Ep,q
1 := Hq(X ,Ωp

X )⇒ Hp+q
dR (X/K )

For a p-adic Poincaré lemma to hold, one has to pass to a big field
BdR (which is a discretely valued field with residue field Cp = Q̂p

admitting an action of GQp) so one has an isomorphism (Faltings)

H i
dR(X/Qp)⊗Qp BdR

∼→ H i
et(XQp

,Qp)⊗Qp BdR

compatible with the filtration and the Galois action on both sides.
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de Rham representations

Taking GQp -invariants of the isomorphism above one obtains

H i
dR(X/Qp) ∼=

(
H i
et(XQp

,Qp)⊗Qp BdR

)GQp

using the fact B
GQp

dR = Qp.

By GAGA the two sides have the same
dimension therefore we define a local p-adic Galois-representation
V to be de Rham if we have dimQp DdR(V ) = dimQp V where

DdR(V ) :=
(
V ⊗Qp BdR

)GQp .

Problem: We cannot recover V from DdR(V )!
(even if V is de Rham)
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Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite
dimensional representation of GE := Gal(E/E ) over Fp. By
Hilbert’s Theorem 90 we can trivialize V over E , ie.

E ⊗Fp V
∼= E

dimFp V ∼= E ⊗E

(
E ⊗Fp V

)GE

as GE -modules. In particular, D(V ) :=
(
E ⊗Fp V

)GE has
dimension dimFp V over E .

New feature: We can recover V from D(V )!

Key extra structure: in characteristic p the Frobenius
Frobp : E → E has fixed field Fp.
Put ϕ := Frobp ⊗idV : E ⊗Fp V → E ⊗Fp V so we have

V =
(
E ⊗E D(V )

)ϕ=id.
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E ⊗Fp V

)GE

as GE -modules. In particular, D(V ) :=
(
E ⊗Fp V

)GE has
dimension dimFp V over E .

New feature: We can recover V from D(V )!

Key extra structure: in characteristic p the Frobenius
Frobp : E → E has fixed field Fp.

Put ϕ := Frobp ⊗idV : E ⊗Fp V → E ⊗Fp V so we have

V =
(
E ⊗E D(V )

)ϕ=id.
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How to pass from char 0 to char p?

Tilting equivalence of Scholze!

Has its origins in the work of Fontaine and Wintenberger:
“norm fields” (1979)
Scholze (∼2012) extended the notion and made it more
geometric

Definition
Let K be a field that is complete with respect to a nonarchimedean
nondiscrete valuation | · | : K → R≥0. We say that K is perfectoid
if the p-Frobenius map Frobp : OK/(p)→ OK/(p) is surjective.

Examples: Cp, ̂Qp(µp∞), ̂Qp(p1/p∞), ̂Fp((T 1/p∞)) but not Qp

(valuation is discrete!).
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Tilting equivalence

Let K be a perfectoid field. The perfectoid field K [ := Frac(OK [)
of characteristic p is called the tilt of K where

OK [ := lim←−
Frobp : OK/(p)→OK/(p)

OK/(p) .

Theorem (Tilting equivalence of Scholze)

Let K be a perfectoid field. Then the functor [ : L 7→ L[ gives an
equivalence of categories between perfectoid extensions of K and
perfectoid extensions of K [. Moreover, if L/K is finite separable
then L is perfectoid (baby case of almost purity).

Corollary
We have GK

∼= GK [ and if K is the completion of a Galois
extension of Qp then we have Gal(K/Qp) ↪→ Aut(K [).
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p-adic local Galois reps and perfect (ϕ, Γ)-modules

Let K be a perfectoid field (of char 0)

{mod p reps of GK} ↔ {mod p reps of GK [} ↔ {ϕ-modules /K [}

By taking Witt vectors and inverting p we also have

{p-adic reps of GK} ↔ {p-adic reps of GK [} ↔ {ϕ-mods /W (K [)[p−1]}

What about reps of GQp? Pick a Galois extension K◦/Qp such
that K := K̂◦ is perfectoid. E.g. take K◦ := Qp(µp∞) and
Γ := Gal(K◦/Qp) whence

{p-adic reps of GQp} ↔ {(ϕ, Γ)-modules /W (K [)[p−1]}

New feature (Scholze): There is a geometric object Spd(Qp) in
characteristic p with étale fundamental group GQp : formal orbit

space of Γ-action on Spa( ̂Qp(µp∞)
[
) in the category of diamonds.
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Imperfect (ϕ, Γ)-modules

We have ̂Qp(µp∞)
[

= ̂Fp((T 1/p∞))—one could, for most purposes,
work with (ϕ, Γ)-modules over these. But e.g. for the p-adic
Langlands programme one needs imperfect ground fields.

Observation: we have GFp((T ))
∼= G ̂Fp((T 1/p∞ ))

 

{mod p reps of GQp} ↔ {(ϕ, Γ)-modules /Fp((T ))}

and

{p-adic reps of GQp} ↔ {étale (ϕ, Γ)-modules /E}

where we put E := OE [p−1] and OE := lim←−n
Z/(pn)((T )). Étale

means: id⊗ ϕ : E ⊗E,ϕ D → D is bijective (note:
Frobp : Fp((T ))→ Fp((T )) is no longer bijective!) This is
Fontaine’s equivalence of categories (1990).
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p-adic Hodge theory via (ϕ, Γ)-modules

Let V be a p-adic representation of GQp and put D(V ) for the
corresponding (ϕ, Γ)-module over E . In order to recover
DdR(V ) =

(
BdR ⊗Qp V

)GQp from D(V ) one first has to pass to
coefficient rings converging p-adically at least somewhere.

Put

R(r ,1) := {f (T ) =
∞∑

i=−∞
aiT

i | ai ∈ Qp, f converges if r < |T |p < 1}

R :=
⋃

0<r<1

R(r ,1) E† := {f ∈ R | lim sup
|T |p→1

|f (T )|p <∞}

Note: E† embeds into E (but R does note).

Theorem (Cherbonnier–Colmez: overconergence)

D(V ) descends to an étale (ϕ, Γ)-module D†(V ) over E†.
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p-adic Hodge theory via (ϕ, Γ)-modules

Theorem (Berger)

Put Drig (V ) := R⊗E† D†(V ) and
t := log(1 + T ) =

∑∞
k=1(−1)k+1T k

k ∈ R. Then there exists a
p-adic differential equation (Qp(µp∞)[[t]]-module with Γ-action)
Ddif (V ) associated to Drig (V ) such that we have

DdR(V ) = Ddif (V )Γ .

Most applications use: for ? = rig , †, or empty Herr’s complex
below computes Galois cohomology:

0→ D?(V )
(ϕ−id,γ−id)→ D?(V )⊕ D?(V )

(id−γ,ϕ−id)→ D?(V )→ 0 .
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Motivation: generalize Colmez’ functors

Main observation of Colmez when constructing a p-adic Langlands
correspondence for GL2(Qp):

1 + T ↔
(
1 1
0 1

)
ϕ↔

(
p 0
0 1

)
Γ↔

(
Z×p 0
0 1

)

 functor from smooth (ie. stabilizers are open) mod pn

representations 7→ mod pn étale (ϕ, Γ)-modules Fontaine7→ mod pn

local Galois representations.
If there is a generalization to groups of higher rank (e.g. GLn(Qp)
with n > 2) it is natural to expect that “multivariable” objects come
into picture. Hint (Breuil–Herzig–Schraen): A generalized Colmez
functor applied to the automorphic GLn(Qp)-representation
attached to a mod p (global) Galois representation ρ (the
corresponding Hecke-isotypical component in the cohomology of a
Shimura-variety) should not give ρ back but

⊗n
i=1
∧i ρ.
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Theorem (Z, Carter–Kedlaya–Z)
Let ∆ be a finite set and put GQp ,∆ :=

∏
α∈∆ GQp . There is an

equivalence of categories

{p-adic reps of GQp ,∆} ↔ {étale (ϕ∆, Γ∆)-modules over E∆}

where ϕ∆ = (ϕα | α ∈ ∆) (one Frobenius lift for each variable),
Γ∆ :=

∏
α∈∆ Γ, E∆ := OE∆

[p−1] and
OE∆

:= lim←−n
Z/(pn)[[Tα | α ∈ ∆]][

∏
α∈∆ T−1

α ].

Theorem (Z)
There is a right exact functor compatible with parabolic induction
and tensor products from the category of smooth mod pn

representations of GLn(Qp) to the category of mod pn

representations of Gn−1
Qp
×Q×p . In case of n = 2 this agrees with

Colmez’ functor realizing p-adic Langlands for GL2(Qp).
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Methods of proof (Carter–Kedlaya–Z)

Recall: π1(Spd(Qp)) ∼= GQp .

Analogue of Künneth Theorem
π1(X1 × X2) ∼= π1(X1)× π1(X2) for pointed topological spaces in
characteristic p geometry?
Spec k × Spec k = Spec k but diag : Gk → Gk × Gk is not an
isomorphism...
Let X1, . . . ,Xn be connected schemes of finite type /Fp and put
X := X1 × · · · × Xn. Let ϕi = 1× · · · × ϕXi

× · · · × 1 : X → X be
the ith partial Frobenius and denote by FEt(X/Φ) the category of
finite étale maps Y → X equipped with commuting isomorphisms
βi : Y → ϕ∗i Y such that the “composite” βn ◦ · · · ◦ β1 is the relative
Frobenius ϕY /X . Then we have

Drinfeld’s lemma for schemes
π1(X/Φ) ∼= π1(X1)× · · · × π1(Xn).
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× · · · × 1 : X → X be
the ith partial Frobenius and denote by FEt(X/Φ) the category of
finite étale maps Y → X equipped with commuting isomorphisms
βi : Y → ϕ∗i Y such that the “composite” βn ◦ · · · ◦ β1 is the relative
Frobenius ϕY /X . Then we have

Drinfeld’s lemma for schemes
π1(X/Φ) ∼= π1(X1)× · · · × π1(Xn).
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Methods of proof (Carter–Kedlaya–Z) cont’d

Analogue of Drinfeld’s Lemma holds for connected, quasi-compact,
quasi-separated diamonds Xi (due to Scholze and Kedlaya).

Technical problem: Spd(Qp)n = (Spa( ̂Qp(µp∞))[)n/Γn, but
(Spa( ̂Qp(µp∞))[)n is not an “affine diamond”, ie. it is not the
diamond spectrum of our (perfect) coefficient ring
R := R+[(T1 · · ·Tn)−1] where

R+ := lim←−
r

(Fp[[T p−∞

1 ]]⊗Fp · · · ⊗Fp Fp[[T p−∞
n ]])/(T1, . . . ,Tn)r

but the rational subspace defined by

{|T1| < 1, . . . , |Tn| < 1} .

Need: “Perfectoid Riemann Extension Theorem”+“imperfection”.
Holds also for possibly distinct finite extensions K1, . . . ,Kn of Qp.
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Further results and possible future directions

(Pal–Z) Generalization of Herr’s complex still computes group
cohomology of GQp ,∆.

(Pal–Z, Carter–Kedlaya–Z) Multivariable (ϕ∆, Γ∆)-modules
are overconvergent.

Future directions:
Pass to the Robba ring and construct Bloch–Kato exponential
maps and Perrin-Riou’s big exponential maps in this product
situation ?

 prove classical ε-isomorphisms (etc.?) for p-adic
representations of the form V1 ⊗Qp V2 if it is known for both
V1 and V2.
Relate these notions to Berger’s Lubin–Tate multivariable
(ϕ, Γ)-modules ?

 better structural properties of the latter
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Thanks for your attention!
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