p-adic Galois representations 6th June 2019

p-adic Galois representations

Gergely Zabradi
E6tvos Lorand University, Budapest, Institute of Mathematics
zger@cs.elte.hu
Talk at Heidelberg

6th June 2019

1/23



L-tunctions In arithmetic geometry p-adic Galois representations 6th June 2019
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L-functions are attached to various objects in arithmetic geometry.
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Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry.

Simplest example: Riemann's (-function

1 1
)=> =1l ;== ®e(s)>1)
n=1 p prime p*

Encoded arithmetic information:

@ Distribution of primes: zeros in the critical strip 0 < Re(s) < 1
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Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry.
Simplest example: Riemann's (-function

n=1 p prime p*

Encoded arithmetic information:
@ Distribution of primes: zeros in the critical strip 0 < Re(s) < 1

@ Arithmetic of cyclotomic fields Q(y:): special values
C(—=1),¢(—3),....¢(2 — p) ~ “p-adic ¢-function” by p-adic
interpolation
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Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry.
Simplest example: Riemann's (-function

n=1 p prime P

Encoded arithmetic information:
@ Distribution of primes: zeros in the critical strip 0 < Re(s) < 1

@ Arithmetic of cyclotomic fields Q(y:): special values
C(—=1),¢(—3),....¢(2 — p) ~ “p-adic ¢-function” by p-adic
interpolation

Need analytic continuation and functional equation!
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Elliptic curves

Let E be an elliptic curve defined over Q ~ [-function
1
L(E,s) = || _ Re(s) > 2
e p prime PE’p(p_S) et :

PEp(T)=1—apT + pT? if E has good reduction at p
where #E(F,) =Pep(l)=1—ap+p.
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Elliptic curves

Let E be an elliptic curve defined over Q ~~ [-function

WEs) = [ or—nr (Re(s) > 2)

p prime 'DE,p(P S)
PEp(T)=1—apT + pT? if E has good reduction at p
where #E(F,) =Pep(l)=1—ap+p.

Encoded arithmetic information:
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Let E be an elliptic curve defined over Q ~~ [-function

WEs) = [ or—nr (Re(s) > 2)

p prime 'DE,p(P 5)
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where #E(F,) =Pep(l)=1—ap+p.

Encoded arithmetic information:

@ Number of mod p points E(IF,)
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Elliptic curves

Let E be an elliptic curve defined over Q ~~ [-function

WEs) = [ or—nr (Re(s) > 2)

p prime 'DE,p(P S)
PEp(T)=1—apT + pT? if E has good reduction at p
where #E(F,) =Pep(l)=1—ap+p.

Encoded arithmetic information:
@ Number of mod p points E(IF,)

@ Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) — weak form

L(E,1) = 0 if and only if #E(Q) = co.

3/23

|



L-functions in arithmetic geometry p-adic Galois representations 6th June 2019

Elliptic curves

Let E be an elliptic curve defined over Q ~~ [-function

1
L(E,s) = B Re(s) > 2
€= I 50 (Re(s) > 2)
PEp(T)=1—apT + pT? if E has good reduction at p
where #E(F,) =Pep(l)=1—ap+p.

Encoded arithmetic information:
@ Number of mod p points E(IF,)

@ Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) — weak form
L(E,1) = 0 if and only if #E(Q) = co. J

Analytic continuation in this case: Taniyama—Shimura—Weil
conjecture (proven by Wiles and Taylor (1993)).
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Varieties ~~ Galois representations

Let X be a smooth projective variety defined over Q and put
Gp = Gal(Q/Q). For any prime ¢ and integer / > 0 we have an
action of Gg on the /-adic cohomology group

H(Xg, Qr) = (IlmH (XQ,ZMZ)> [ .

Reason for finite coefficients:

Hi(Xg, 2,/072) = HL, ,(X(C),Z/¢"Z). Need to pass to
characteristic 0 in order to define [-functions~ /-adic
representations!
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@ X = {x},i = 0~ trivial Galois representation.
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Varieties ~~ Galois representations

Let X be a smooth projective variety defined over Q and put
Gp = Gal(Q/Q). For any prime ¢ and integer / > 0 we have an
action of Gg on the /-adic cohomology group

Her (X Qo) = (@ He(Xg Z/M)) Gl

Reason for finite coefficients:
Hi(Xg, 2,/072) = HL, ,(X(C),Z/¢"Z). Need to pass to
characteristic 0 in order to define [-functions~ /-adic
representations! In the above examples:

@ X = {x},i = 0~ trivial Galois representation.

o X =E,i=1~ HY(EgZ/0"Z) = E[)(1).
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Galois representations ~~ L-functions

Fix an embedding Q < Q,, for any prime p (and also Q < C).
This defines an embedding G, — Go.
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Galois representations ~~ L-functions

Fix an embedding Q < Q,, for any prime p (and also Q < C).
This defines an embedding G, < Gg. The structure of /ocal
Galois groups is rather well-understood:

1— 1, = Gg, = Gp, — 1

where Gy, = 7 is topologically generated by the (arithmetic)
Frobenius automorphism Frob,: x — x”.
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Galois representations ~~ L-functions

Fix an embedding Q < Q,, for any prime p (and also Q < C).
This defines an embedding G, < Gg. The structure of /ocal
Galois groups is rather well-understood:

1— 1, = Gg, = Gp, — 1

where Gy, = 7 is topologically generated by the (arithmetic)
Frobenius automorphism Frob,: x — x”.  Now if

p: Ggp — GL(V)

is a global Galois-representation on a finite dimensional vectorspace
V/ over a field K of characteristic 0 (embedded into C) then we
defined the local polynomial at p as the characteristic polynomial

P,(T) := det(id — T Frob, | V) € K[T] .
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Galois representations ~~ L-functions

The L-function attached to the Galois representation p is defined as

L(p,s) = H

p prime

P ) (Re(s) > 0) .

In case of X = {x}, i = 0 this specializes to Riemann ¢ and in case
X = E, i = 1 to the L-function of the elliptic curve as above.
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Galois representations ~~ L-functions

The L-function attached to the Galois representation p is defined as

L(p,s) = H

p prime

P (R >0

In case of X = {x}, i = 0 this specializes to Riemann ¢ and in case
X = E, i = 1 to the L-function of the elliptic curve as above.
Fundamental open questions in the theory:

@ Analytic continuation and functional equation ~~ modularity
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Galois representations ~~ L-functions

The L-function attached to the Galois representation p is defined as

Lps) =[] P/p(lps) (Re(s) > 0) .

p prime

In case of X = {x}, i = 0 this specializes to Riemann ¢ and in case
X = E, i = 1 to the L-function of the elliptic curve as above.
Fundamental open questions in the theory:
@ Analytic continuation and functional equation ~~ modularity
@ Which Galois representations arise from geometry, ie. as a
subquotient of the étale cohomology of a smooth projective
variety?
The above 2 questions are closely related.
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Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. (-adic Galois representation p: Gy — GL,(Q/) comes

from geometry if and only if the following two conditions hold:

(1) pis unramified (ie. p(/,) = {1}) at all but finitely many primes
p.

(ii) pis de Rahm at the prime p = /.
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Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. (-adic Galois representation p: Gg — GL,(Q/) comes

from geometry if and only if the following two conditions hold:

(1) pis unramified (ie. p(/,) = {1}) at all but finitely many primes
p.

(ii) pis de Rahm at the prime p = /.

The “only if" part of the above conjecture is known: (/) by
Grothendieck (note that in the case of elliptic curves those primes
ramify at which the curve has bad reduction: criterion of
Néron—-Ogg—Shafarevich—in particular, there are finitely many).
Assertion (/i) (“p-adic de Rham comparison isomorphism”) was first
proven by Faltings and by Tsuji and reproven recently by Beilinson
(survey: Szamuely—Z) and by Scholze.
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Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. (-adic Galois representation p: Gg — GL,(Q/) comes

from geometry if and only if the following two conditions hold:

(1) pis unramified (ie. p(/,) = {1}) at all but finitely many primes
p.

(ii) pis de Rahm at the prime p = /.

The “only if" part of the above conjecture is known: (/) by
Grothendieck (note that in the case of elliptic curves those primes
ramify at which the curve has bad reduction: criterion of
Néron—-Ogg—Shafarevich—in particular, there are finitely many).
Assertion (/i) (“p-adic de Rham comparison isomorphism”) was first
proven by Faltings and by Tsuji and reproven recently by Beilinson
(survey: Szamuely—Z) and by Scholze. We need to better
understand the case ¢ = p!
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Classical comparison isomorphism

Let X be a smooth projective variety over C. Classical Poincaré
lemma ~

" (X(€),C) = Hir(X*",C)

sing
where the right hand side is computed by the Hodge—to—de Rham
spectral sequence

EfT = HI(X", Q%.,) = HEE9(X?",C)

where Q’;«,n stands for the sheaf of holomorphic p-forms on the
analytic manifold X",
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Classical comparison isomorphism

Let X be a smooth projective variety over C. Classical Poincaré
lemma ~

aing(X(C), C) = Hgr(X*", C)

sing
where the right hand side is computed by the Hodge—to—de Rham
spectral sequence

EfT = HI(X", Q%.,) = HEE9(X?",C)

where Q)p@n stands for the sheaf of holomorphic p-forms on the
analytic manifold X",

Can we generalize this to other ground fields K?
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Classical comparison isomorphism

Let X be a smooth projective variety over C. Classical Poincaré
lemma ~

" (X(€),C) = Hir(X*",C)

sing
where the right hand side is computed by the Hodge—to—de Rham
spectral sequence

EP9 = HI(X™", Q%) = HOF9(X?",C)
where Q’;«,n stands for the sheaf of holomorphic p-forms on the
analytic manifold X",
Can we generalize this to other ground fields K?
o Etale cohomology can be regarded as the analogue of singular

cohomology: they agree if K = C and the coefficients are
finite (or, after taking the limit, p-adic).
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Classical comparison isomorphism

Let X be a smooth projective variety over C. Classical Poincaré
lemma ~

" (X(€),C) = Hir(X*",C)

sing
where the right hand side is computed by the Hodge—to—de Rham
spectral sequence

EfT = HI(X", Q%.,) = HEE9(X?",C)

where Q’;@n stands for the sheaf of holomorphic p-forms on the
analytic manifold X",

Can we generalize this to other ground fields K?

o Etale cohomology can be regarded as the analogue of singular
cohomology: they agree if K = C and the coefficients are
finite (or, after taking the limit, p-adic).

@ In case of algebraic de Rham cohomology coefficients lie in K!

8/
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p-adic comparison isomorphism

So we take K = (0. Associated to the algebraic de Rham complex
Q%:0x S0k 502 ...

of sheaves (in the Zariski topology) of Kahler-differentials there is a
Hodge—to—de Rham spectral sequence

EP9 = HI(X, Q%) = HOZ9(X/K)
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p-adic comparison isomorphism

So we take K = (0. Associated to the algebraic de Rham complex
Q%:0x S0k 502 ...

of sheaves (in the Zariski topology) of Kahler-differentials there is a
Hodge—to—de Rham spectral sequence

EP9 = HI(X, Q%) = HOZ9(X/K)

For a p-adic Poincaré lemma to hold, one has to pass to a big field

Bur (which is a discretely valued field with residue field C, = Q,
admitting an action of Gg,) so one has an isomorphism (Faltings)

Hr(X/Qp) ©q, Bar ~ Hie(Xg;, Qp) ®q, Bar

compatible with the filtration and the Galois action on both sides.

9/
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de Rham representations

Taking Gg,-invariants of the isomorphism above one obtains
i ~ i . Gap
Hyr(X/Qp) = (Het(x@7 Qp) ®q, BdR)

. Go
using the fact B = Q.
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de Rham representations

Taking Gg,-invariants of the isomorphism above one obtains
i i . Gap
HdR(X/Qp) = (Het(X@7 @p) ®qQ, BdR)
Go .
using the fact B ;" = Q,. By GAGA the two sides have the same
dimension therefore we define a local p-adic Galois-representation

V to be de Rham if we have dimg, Dyr(V) = dimg, V where

Dar(V) = (V ®q, Bar) % .
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de Rham representations

Taking Gg,-invariants of the isomorphism above one obtains
i ~ i . Gap
Hir(X/Qp) = (Hix(Xg; Qo) ©g, Bar)
using the fact BS,%" = . By GAGA the two sides have the same
dimension therefore we define a local p-adic Galois-representation
V to be de Rham if we have dimg, Dyr(V) = dimg, V where
Go
DdR(V) = (\/ ®QP BdR) P

Problem: We cannot recover V' from Dgyr(V)!
(even if V is de Rham)
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Galois representation in characteristic p

Let £ be a perfect field of characteristic p and V' be a finite
dimensional representation of Gg := Gal(E/E) over IF,. By
Hilbert's Theorem 90 we can trivialize V/ over E, ie.

dimg, V

Eep, V2E"™ " > Egg (Eog, V)

as Ge-modules. In particular, D(V) := (E @p, V) GE | as
dimension dimg, V over E.
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dimensional representation of Gg := Gal(E/E) over IF,. By
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dimg, V

E®s, VE ~F w¢ (E g, V)

as Ge-modules. In particular, D(V) := (E @p, V) “F has
dimension dimp, V/ over E.

New feature: We can recover V from D(V)!
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Galois representation in characteristic p

Let £ be a perfect field of characteristic p and V' be a finite
dimensional representation of Gg := Gal(E/E) over IF,. By
Hilbert's Theorem 90 we can trivialize V/ over E, ie.

dimg, V

Eep, V2E"™ " > Egg (Eog, V)

as Ge-modules. In particular, D(V) := (E @p, V) “F has
dimension dimp, V/ over E.
New feature: We can recover V from D(V)!

Key extra structure: in characteristic p the Frobenius
Frob,: E — E has fixed field [F,.
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Galois representation in characteristic p

Let £ be a perfect field of characteristic p and V' be a finite
dimensional representation of Gg := Gal(E/E) over IF,. By
Hilbert's Theorem 90 we can trivialize V/ over E, ie.

dimg, V

E®s, VE ~F w¢ (E g, V)

as Ge-modules. In particular, D(V) := (E @p, V) “F has
dimension dimp, V/ over E.

New feature: We can recover V from D(V)!

Key extra structure: in characteristic p the Frobenius

Frob,: E — E has fixed field .

Put ¢ := Frob, @idy: E @p, V — E @p, V so we have
— p=id

V= (E®eD(V))" ",
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How to pass from char 0 to char p?

Tilting equivalence of Scholze!

@ Has its origins in the work of Fontaine and Wintenberger:
“norm fields” (1979)
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How to pass from char 0 to char p?

Tilting equivalence of Scholze!

@ Has its origins in the work of Fontaine and Wintenberger:
“norm fields” (1979)

@ Scholze (~2012) extended the notion and made it more

geometric
Definition
Let K be a field that is complete with respect to a nonarchimedean
nondiscrete valuation | - |: K — R=Y. We say that K is perfectoid

if the p-Frobenius map Frob,: Ok /(p) — Ok /(p) is surjective.
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How to pass from char 0 to char p?

Tilting equivalence of Scholze!

@ Has its origins in the work of Fontaine and Wintenberger:
“norm fields” (1979)

@ Scholze (~2012) extended the notion and made it more

geometric
Definition
Let K be a field that is complete with respect to a nonarchimedean
nondiscrete valuation | - |: K — R=Y. We say that K is perfectoid

if the p-Frobenius map Frob,: Ok /(p) — Ok /(p) is surjective.

Examples: Cp, Qp (1o ) Qp(pL/P™), Fo(THP)) but not Q,
(valuation is discrete!).
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Tilting equivalence

Let K be a perfectoid field. The perfectoid field K” := Frac(Oy. )
of characteristic p is called the tilt of K where

Ok/(p) -

3

OK’ = ||
Frob,: Ok

Sl

(P)—Ok/(pP)
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Tilting equivalence

Let K be a perfectoid field. The perfectoid field K” := Frac(Oy. )
of characteristic p is called the tilt of K where

Ok/(p) -

5

Froby: Ok /(p)—Ok/(p)

Theorem (Tilting equivalence of Scholze)

Let K be a perfectoid field. Then the functor b: L+ L’ gives an
equivalence of categories between perfectoid extensions of K and
perfectoid extensions of K”. Moreover, if L/K is finite separable
then L is perfectoid (baby case of almost purity).
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Tilting equivalence

Let K be a perfectoid field. The perfectoid field K” := Frac(Oy. )
of characteristic p is called the tilt of K where

Oy» = Ok/(p) -

Frob,: Ok

13

~

(P)—Ok/(pP)

Theorem (Tilting equivalence of Scholze)

Let K be a perfectoid field. Then the functor b: L+ L’ gives an
equivalence of categories between perfectoid extensions of K and
perfectoid extensions of K”. Moreover, if L/K is finite separable
then L is perfectoid (baby case of almost purity).

Corollary

We have Gi = G, and if K is the completion of a Galois
extension of Q, then we have Gal(K/Q,) < Aut(K").
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p-adic local Galois reps and perfect (i, I')-modules

Let K be a perfectoid field (of char 0)

{mod p reps of Gk} <> {mod p reps of Gy} <> {¢-modules /K’}
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p-adic local Galois reps and perfect (i, I')-modules

Let K be a perfectoid field (of char 0)
{mod p reps of Gk} <> {mod p reps of Gy} <> {¢-modules /K’}
By taking Witt vectors and inverting p we also have

{p-adic reps of Gi} «» {p-adic reps of Gy} <+ {p-mods /W(K*)[p~*]}
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p-adic local Galois reps and perfect (i, I')-modules

Let K be a perfectoid field (of char 0)

{mod p reps of Gk} <> {mod p reps of Gy} <> {¢-modules /K’}

By taking Witt vectors and inverting p we also have

{p-adic reps of Gi} «» {p-adic reps of Gy} <+ {p-mods /W(K*)[p~*]}

What about reps of Gg,?
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p-adic local Galois reps and perfect (i, I')-modules

Let K be a perfectoid field (of char 0)

{mod p reps of Gk} <> {mod p reps of Gy} <> {¢-modules /K’}

By taking Witt vectors and inverting p we also have

{p-adic reps of Gi} «» {p-adic reps of Gy} <+ {p-mods /W(K*)[p~*]}

What about reps of Gp,?  Pick a Galois extension K,/Q, such

that K := K, is perfectoid. E.g. take K, := Qp(ptp=) and
I:= Gal(K,/Qp) whence

{p-adic reps of Gg,} <+ {(¢,I)-modules JW(K) [P~}
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p-adic local Galois reps and perfect (i, I')-modules

Let K be a perfectoid field (of char 0)

{mod p reps of Gk} <> {mod p reps of Gy} <> {¢-modules /K’}

By taking Witt vectors and inverting p we also have

{p-adic reps of Gi} «» {p-adic reps of Gy} <+ {p-mods /W(K*)[p~*]}

What about reps of Gp,?  Pick a Galois extension K,/Q, such

that K := K, is perfectoid. E.g. take K, := Qp(ptpe=) and
[ := Gal(K,/Qp,) whence

{p-adic reps of Gg,} <+ {(¢,I)-modules JW(K) [P~}

New feature (Scholze): There is a geometric object Spd(Q,) in
characteristic p with étale fundamental group Gg,: formal orbit

— b
space of [-action on Spa(Q,(/ip=) ) in the category of diamonds.
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Imperfect (i, I')-modules

— b —

We have Q,(j1p) = F,((T1/P>))—one could, for most purposes,
work with (¢, I')-modules over these. But e.g. for the p-adic
Langlands programme one needs imperfect ground fields.
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We have Q,(j1p) = F,((T1/P>))—one could, for most purposes,
work with (¢, I')-modules over these. But e.g. for the p-adic
Langlands programme one needs imperfect ground fields.

Observation: we have Gy (1) = G_ Ty
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{mod p reps of Gg,} > {(p,)-modules /F,(T))}
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(¢, I')-modules

Imperfect (i, I')-modules

— b —

We have Q,(j1p) = F,((T1/P>))—one could, for most purposes,
work with (¢, I')-modules over these. But e.g. for the p-adic

Langlands programme one needs imperfect ground fields.

Observation: we have Gy (1) = G_ Ty
p

{mod p reps of Gg,} > {(p,)-modules /F,(T))}

and

{p-adic reps of Gg,} <+ {étale (¢, I)-modules /£}

where we put £ == O¢[p~!] and O¢ := H@nZ/(p”)(( T)). Etale
means: id © ¢p: € @g , D — D is bijective (note:

Froby: F,((T)) — F,((T)) is no longer bijectivel) This is
Fontaine's equivalence of categories (1990).

p-adic Galois representations 6th June 2019 15 / 23
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p-adic Hodge theory via (¢, I')-modules

Let V be a p-adic representation of Gg, and put D(V/) for the
corresponding (, I)-module over £. In order to recover
Dy4r(V) = (BdR ®qQ, V) % from D(V') one first has to pass to
coefficient rings converging p-adically at least somewhere.
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p-adic Hodge theory via (¢, I')-modules

Let V be a p-adic representation of Gg, and put D(V/) for the
corresponding (, I)-module over £. In order to recover
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p-adic Hodge theory via (¢, I')-modules

Let V be a p-adic representation of Gg, and put D(V/) for the
corresponding (, I)-module over £. In order to recover
Dar(V) = (Bar ®q, V) % from D(V) one first has to pass to
coefficient rings converging p-adically at least somewhere. Put

RN . {F(T) = Z a; T’ | aj € Qp, f convergesif r < |T|, <1}
R:= [J RUD  ehi={f e R |limsup|f(T)|, < oo}
0<r<1 ITlp=1

Note: £ embeds into £ (but R does note).

Theorem (Cherbonnier—Colmez: overconergence) J

D(V) descends to an étale (i, )-module DT(V/) over £°.
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p-adic Hodge theory via (¢, I')-modules

Theorem (Berger)
Put D"8(V) := R ®¢+ DT(V) and
t:i=log(l+ T)=Y o (—1)1I- T ¢ R. Then there exists a

p-adic differential equation (Qp(up )[[£]]-module with [-action)
DY (V) associated to D"8(V/) such that we have

Dar(V) = DU (V)
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p-adic Hodge theory via (¢, I')-modules

Theorem (Berger)

Put D"8(V) := R ®¢+ DT(V) and
t:i=log(l+ T)=Y o (—1)1I- 7" € R. Then there exists a

p-adic differential equation (@p(up )[[£]]-module with [-action)
DY (V) associated to D"8(V/) such that we have

Dar(V) = DU (V)

Most applications use: for ? = rig, t, or empty Herr's complex
below computes Galois cohomology:

(safid_r;’*id)

0 — D*(V) D'(Vye D'(V) T pr vy Lo
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Motivation: generalize Colmez' functors

Main observation of Colmez when constructing a p-adic Langlands
correspondence for GL>(Q,):

11  (p O Z; 0
1+TH<O 1) pH(O 1) FH<O 1
~~ functor from smooth (ie. stabilizers are open) mod p”

: B} Fontai
representations — mod p” étale (¢, )-modules  “™=" mod p

local Galois representations.

If there is a generalization to groups of higher rank (e.g. GL,(Q))
with n > 2) it is natural to expect that “multivariable” objects come
into picture. Hint (Breuil-Herzig—Schraen): A generalized Colmez
functor applied to the automorphic GL,(Q,)-representation
attached to a mod p (global) Galois representation p (the
corresponding Hecke-isotypical component in the cohomology of a
Shimura-variety) should not give p back but @, A\’ p.

n
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Theorem (Z, Carter—Kedlaya—2)

Let A be a finite set and put Gg, A = [[,ca Gg, Thereis an
equivalence of categories

{p-adic reps of Gg,.a} <+ {étale (¢, a)-modules over Ea}

where oa = (¢, | @ € A) (one Frobenius lift for each variable),
FA = HaGA I, EA = OgA[pil] and
Ogy = lim Z/(p")[Ta | o € AlllTaen Ta'l
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Theorem (Z, Carter—Kedlaya—2)

Let A be a finite set and put Gg, A = [[,ca Gg, Thereis an
equivalence of categories

{p-adic reps of Gg,.a} <+ {étale (¢, a)-modules over Ea}

where oa = (¢, | @ € A) (one Frobenius lift for each variable),
N HaeA I, Ea = OgA[pil] and
Ogy = lim Z/(p")[Ta | o € AlllTaen Ta'l

Theorem (Z)

There is a right exact functor compatible with parabolic induction
and tensor products from the category of smooth mod p”
representations of GL,(Q,) to the category of mod p”
representations of G(”D;l x Q. In case of n = 2 this agrees with
Colmez’ functor realizing p-adic Langlands for GL2(Q),).
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m1( Xy x Xo) = m1(X1) x m1(X2) for pointed topological spaces in
characteristic p geometry?

Spec k x Spec k = Spec k but diag: Gy — G x G is not an
isomorphism...

Let Xi,..., X, be connected schemes of finite type /I, and put
X=Xy x - x Xy Let o =1x---xpx x--x1: X = X be
the ith partial Frobenius and denote by FEt(X/®) the category of
finite étale maps Y — X equipped with commuting isomorphisms
Bi: Y — 7Y such that the “composite” 3,0 --- o 3 is the relative
Frobenius pyx.
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Methods of proof (Carter-Kedlaya-Z7)

Recall: 71(Spd(Q,)) = Gg,. Analogue of Kiinneth Theorem
m1( Xy x Xo) = m1(X1) x m1(X2) for pointed topological spaces in
characteristic p geometry?

Spec k x Spec k = Spec k but diag: Gy — G x G is not an
isomorphism...

Let Xi,..., X, be connected schemes of finite type /I, and put
X=Xy x - x Xy Let o =1x---xpx x--x1: X = X be
the ith partial Frobenius and denote by FEt(X/®) the category of
finite étale maps Y — X equipped with commuting isomorphisms
Bi: Y — 7Y such that the “composite” 3,0 --- o 3 is the relative
Frobenius oy x. Then we have

Drinfeld's lemma for schemes
ﬂl(X/d))gﬂ'l(Xl)><~--X771(Xn). }
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Methods of proof (Carter—Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact,
quasi-separated diamonds X; (due to Scholze and Kedlaya).
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Methods of proof (Carter—Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact,
quasi-separated diamonds X; (due to Scholze and Kedlaya).

Technical problem: Spd(Q,)" = (Spa(@p/(;;))b)"/r", but
(Spa(@p(pp>=))’)" is not an “affine diamond”, ie. it is not the

diamond spectrum of our (perfect) coefficient ring
R:=R"[(Ty - T,) '] where

RY = im(F,[TY 1@k, -+ @5, Fp[TE " 1)/(T1,- -, Ta)
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but the rational subspace defined by

{ITh] <1,...,|T,| <1} .
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Analogue of Drinfeld's Lemma holds for connected, quasi-compact,
quasi-separated diamonds X; (due to Scholze and Kedlaya).

Technical problem: Spd(Q,)" = (Spa((@p/(/:x))b)”/rn, but
(Spa(@p(pp>=))’)" is not an “affine diamond”, ie. it is not the

diamond spectrum of our (perfect) coefficient ring
R:=R"[(Ty - T,) '] where
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Need: “Perfectoid Riemann Extension Theorem”+"imperfection”.
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Methods of proof (Carter—Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact,
quasi-separated diamonds X; (due to Scholze and Kedlaya).

Technical problem: Spd(Q,)" = (Spa((@p/(/:x))b)”/rn, but
(Spa(@p(pp>=))’)" is not an “affine diamond”, ie. it is not the

diamond spectrum of our (perfect) coefficient ring
R:=R"[(Ty - T,) '] where

RY = im(F,[TY "1 ®r, - @5, Fo[ T2 1)/(T1,- -, Ta)

r

but the rational subspace defined by
{ITh] <1,...,|T,| <1} .

Need: “Perfectoid Riemann Extension Theorem”+"imperfection”.
Holds also for possibly distinct finite extensions K1, ..., K, of Qp.
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Further results and possible future directions

e (Pal-Z) Generalization of Herr's complex still computes group
cohomology of Gg, A.
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e (Pal-Z) Generalization of Herr's complex still computes group
cohomology of Gg, A.

o (Pal-Z, Carter—Kedlaya—Z) Multivariable (¢a, A )-modules
are overconvergent.

Future directions:

@ Pass to the Robba ring and construct Bloch—-Kato exponential
maps and Perrin-Riou's big exponential maps in this product
situation ~- prove classical e-isomorphisms (etc.?) for p-adic
representations of the form V1 g, V2 if it is known for both
\/1 and \/2.
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Further results and possible future directions

e (Pal-Z) Generalization of Herr's complex still computes group
cohomology of Gg, A.

o (Pal-Z, Carter—Kedlaya—Z) Multivariable (¢a, A )-modules
are overconvergent.
Future directions:

@ Pass to the Robba ring and construct Bloch—-Kato exponential
maps and Perrin-Riou's big exponential maps in this product

situation ~- prove classical e-isomorphisms (etc.?) for p-adic
representations of the form V1 g, V2 if it is known for both
\/1 and \/2.

o Relate these notions to Berger's Lubin—Tate multivariable
(¢, I')-modules L better structural properties of the latter
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Thanks for your attention!
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