p-adic Galois representations

Gergely Zábrádi
Eötvös Loránd University, Budapest, Institute of Mathematics
zger@cs.elte.hu
Talk at Heidelberg

6th June 2019

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry.

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann's ζ-function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}} \quad(\operatorname{Re}(s)>1)
$$

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann's ζ-function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}} \quad(\operatorname{Re}(s)>1)
$$

Encoded arithmetic information:

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann's ζ-function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}} \quad(\operatorname{Re}(s)>1)
$$

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip $0<\operatorname{Re}(s)<1$

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann's ζ-function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}} \quad(\operatorname{Re}(s)>1)
$$

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip $0<\operatorname{Re}(s)<1$
- Arithmetic of cyclotomic fields $\mathbb{Q}\left(\mu_{p}\right)$: special values $\zeta(-1), \zeta(-3), \ldots, \zeta(2-p) \rightsquigarrow$ " p-adic ζ-function" by p-adic interpolation

Riemann's zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann's ζ-function

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}} \quad(\operatorname{Re}(s)>1)
$$

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip $0<\operatorname{Re}(s)<1$
- Arithmetic of cyclotomic fields $\mathbb{Q}\left(\mu_{p}\right)$: special values $\zeta(-1), \zeta(-3), \ldots, \zeta(2-p) \rightsquigarrow$ " p-adic ζ-function" by p-adic interpolation

Need analytic continuation and functional equation!

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$
\begin{array}{cc}
L(E, s):=\prod_{p \text { prime }} \frac{1}{P_{E, p}\left(p^{-s}\right)} & (\operatorname{Re}(s)>2) \\
P_{E, p}(T)=1-a_{p} T+p T^{2} & \text { if } E \text { has good reduction at } p \\
\text { where } & \# E\left(\mathbb{F}_{p}\right)=P_{E, p}(1)=1-a_{p}+p
\end{array}
$$

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$
\begin{array}{cc}
L(E, s):=\prod_{p \text { prime }} \frac{1}{P_{E, p}\left(p^{-s}\right)} & (\operatorname{Re}(s)>2) \\
P_{E, p}(T)=1-a_{p} T+p T^{2} & \text { if } E \text { has good reduction at } p \\
\text { where } & \# E\left(\mathbb{F}_{p}\right)=P_{E, p}(1)=1-a_{p}+p .
\end{array}
$$

Encoded arithmetic information:

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$
\begin{array}{cc}
L(E, s):=\prod_{p \text { prime }} \frac{1}{P_{E, p}\left(p^{-s}\right)} & (\operatorname{Re}(s)>2) \\
P_{E, p}(T)=1-a_{p} T+p T^{2} & \text { if } E \text { has good reduction at } p \\
\text { where } & \# E\left(\mathbb{F}_{p}\right)=P_{E, p}(1)=1-a_{p}+p .
\end{array}
$$

Encoded arithmetic information:

- Number of $\bmod p$ points $E\left(\mathbb{F}_{p}\right)$

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$
\begin{array}{cc}
L(E, s):=\prod_{p \text { prime }} \frac{1}{P_{E, p}\left(p^{-s}\right)} & (\operatorname{Re}(s)>2) \\
P_{E, p}(T)=1-a_{p} T+p T^{2} & \text { if } E \text { has good reduction at } p \\
\text { where } & \# E\left(\mathbb{F}_{p}\right)=P_{E, p}(1)=1-a_{p}+p .
\end{array}
$$

Encoded arithmetic information:

- Number of $\bmod p$ points $E\left(\mathbb{F}_{p}\right)$
- Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) - weak form $L(E, 1)=0$ if and only if $\# E(\mathbb{Q})=\infty$.

Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$
\begin{array}{cc}
L(E, s):=\prod_{p \text { prime }} \frac{1}{P_{E, p}\left(p^{-s}\right)} & (\operatorname{Re}(s)>2) \\
P_{E, p}(T)=1-a_{p} T+p T^{2} & \text { if } E \text { has good reduction at } p \\
\text { where } & \# E\left(\mathbb{F}_{p}\right)=P_{E, p}(1)=1-a_{p}+p .
\end{array}
$$

Encoded arithmetic information:

- Number of $\bmod p$ points $E\left(\mathbb{F}_{p}\right)$
- Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) - weak form $L(E, 1)=0$ if and only if $\# E(\mathbb{Q})=\infty$.

Analytic continuation in this case: Taniyama-Shimura-Weil conjecture (proven by Wiles and Taylor (1993)).

Varieties \rightsquigarrow Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$
H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right):=\left(\lim _{r} H_{e t}^{i}\left(X_{\widetilde{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right)\right)\left[\ell^{-1}\right] .
$$

Reason for finite coefficients:
$H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) \cong H_{\text {sing }}^{i}\left(X(\mathbb{C}), \mathbb{Z} / \ell^{r} \mathbb{Z}\right)$. Need to pass to
characteristic 0 in order to define L-functions $\rightsquigarrow \ell$-adic representations!

Varieties \rightsquigarrow Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$
H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right):=\left(\lim _{r} H_{e t}^{i}\left(X_{\widetilde{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right)\right)\left[\ell^{-1}\right] .
$$

Reason for finite coefficients:
$H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) \cong H_{\text {sing }}^{i}\left(X(\mathbb{C}), \mathbb{Z} / \ell^{r} \mathbb{Z}\right)$. Need to pass to
characteristic 0 in order to define L-functions $\rightsquigarrow \ell$-adic representations! In the above examples:

- $X=\{*\}, i=0 \rightsquigarrow$ trivial Galois representation.

Varieties \rightsquigarrow Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$
H_{e t}^{i}\left(X_{\widetilde{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right):=\left(\frac{\lim _{r}}{r} H_{e t}^{i}\left(X_{\widetilde{Q}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right)\right)\left[\ell^{-1}\right] .
$$

Reason for finite coefficients:
$H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) \cong H_{\text {sing }}^{i}\left(X(\mathbb{C}), \mathbb{Z} / \ell^{r} \mathbb{Z}\right)$. Need to pass to
characteristic 0 in order to define L-functions $\rightsquigarrow \ell$-adic representations! In the above examples:

- $X=\{*\}, i=0 \rightsquigarrow$ trivial Galois representation.
- $X=E, i=1 \rightsquigarrow H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Z} / \ell^{r} \mathbb{Z}\right) \cong E\left[\ell^{r}\right](1)$.

Galois representations \rightsquigarrow L-functions

Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}$ por any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}}$.

Galois representations $\rightsquigarrow L$-functions

Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_{p}}$ for any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}}$. The structure of local Galois groups is rather well-understood:

$$
1 \rightarrow I_{p} \rightarrow G_{\mathbb{Q}_{p}} \rightarrow G_{\mathbb{F}_{p}} \rightarrow 1
$$

where $G_{\mathbb{F}_{p}} \cong \widehat{\mathbb{Z}}$ is topologically generated by the (arithmetic) Frobenius automorphism Frob ${ }_{p}: x \mapsto x^{p}$.

Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}_{p}}$ for any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}}$. The structure of local Galois groups is rather well-understood:

$$
1 \rightarrow I_{p} \rightarrow G_{\mathbb{Q}_{p}} \rightarrow G_{\mathbb{F}_{p}} \rightarrow 1
$$

where $G_{\mathbb{F}_{p}} \cong \widehat{\mathbb{Z}}$ is topologically generated by the (arithmetic) Frobenius automorphism Frob $_{p}: x \mapsto x^{p}$. Now if

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(V)
$$

is a global Galois-representation on a finite dimensional vectorspace V over a field K of characteristic 0 (embedded into \mathbb{C}) then we defined the local polynomial at p as the characteristic polynomial

$$
P_{\rho, p}(T):=\operatorname{det}\left(i d-T \operatorname{Frob}_{p} \mid V^{I_{p}}\right) \in K[T] .
$$

Galois representations $\rightsquigarrow L$-functions

The L-function attached to the Galois representation ρ is defined as

$$
L(\rho, s):=\prod_{p \text { prime }} \frac{1}{P_{\rho, p}\left(p^{-s}\right)} \quad(\operatorname{Re}(s) \gg 0)
$$

In case of $X=\{*\}, i=0$ this specializes to Riemann ζ and in case $X=E, i=1$ to the L-function of the elliptic curve as above.

Galois representations $\rightsquigarrow L$-functions

The L-function attached to the Galois representation ρ is defined as

$$
L(\rho, s):=\prod_{p \text { prime }} \frac{1}{P_{\rho, p}\left(p^{-s}\right)} \quad(\operatorname{Re}(s) \gg 0)
$$

In case of $X=\{*\}, i=0$ this specializes to Riemann ζ and in case $X=E, i=1$ to the L-function of the elliptic curve as above.
Fundamental open questions in the theory:

- Analytic continuation and functional equation \rightsquigarrow modularity

The L-function attached to the Galois representation ρ is defined as

$$
L(\rho, s):=\prod_{p \text { prime }} \frac{1}{P_{\rho, p}\left(p^{-s}\right)} \quad(\operatorname{Re}(s) \gg 0)
$$

In case of $X=\{*\}, i=0$ this specializes to Riemann ζ and in case
$X=E, i=1$ to the L-function of the elliptic curve as above.
Fundamental open questions in the theory:

- Analytic continuation and functional equation \rightsquigarrow modularity
- Which Galois representations arise from geometry, ie. as a subquotient of the étale cohomology of a smooth projective variety?
The above 2 questions are closely related.

Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. ℓ-adic Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)$ comes from geometry if and only if the following two conditions hold:
(i) ρ is unramified (ie. $\rho\left(I_{p}\right)=\{1\}$) at all but finitely many primes p.
(ii) ρ is de Rahm at the prime $p=\ell$.

Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. ℓ-adic Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)$ comes from geometry if and only if the following two conditions hold:
(i) ρ is unramified (ie. $\rho\left(I_{p}\right)=\{1\}$) at all but finitely many primes p.
(ii) ρ is de Rahm at the prime $p=\ell$.

The "only if" part of the above conjecture is known: (i) by Grothendieck (note that in the case of elliptic curves those primes ramify at which the curve has bad reduction: criterion of Néron-Ogg-Shafarevich-in particular, there are finitely many). Assertion (ii) ("p-adic de Rham comparison isomorphism") was first proven by Faltings and by Tsuji and reproven recently by Beilinson (survey: Szamuely-Z) and by Scholze.

Geometric Galois representations

Fontaine-Mazur conjecture (1995)

An irred. ℓ-adic Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)$ comes from geometry if and only if the following two conditions hold:
(i) ρ is unramified (ie. $\rho\left(I_{p}\right)=\{1\}$) at all but finitely many primes p.
(ii) ρ is de Rahm at the prime $p=\ell$.

The "only if" part of the above conjecture is known: (i) by Grothendieck (note that in the case of elliptic curves those primes ramify at which the curve has bad reduction: criterion of Néron-Ogg-Shafarevich-in particular, there are finitely many). Assertion (ii) ("p-adic de Rham comparison isomorphism") was first proven by Faltings and by Tsuji and reproven recently by Beilinson (survey: Szamuely-Z) and by Scholze. We need to better understand the case $\ell=p$!

Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \rightsquigarrow

$$
H_{\text {sing }}^{n}(X(\mathbb{C}), \mathbb{C})=H_{d R}^{n}\left(X^{a n}, \mathbb{C}\right)
$$

where the right hand side is computed by the Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X^{a n}, \Omega_{X^{a n}}^{p}\right) \Rightarrow H_{d R}^{p+q}\left(X^{a n}, \mathbb{C}\right)
$$

where $\Omega_{X^{a n}}^{p}$ stands for the sheaf of holomorphic p-forms on the analytic manifold $X^{a n}$.

Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \rightsquigarrow

$$
H_{\text {sing }}^{n}(X(\mathbb{C}), \mathbb{C})=H_{d R}^{n}\left(X^{a n}, \mathbb{C}\right)
$$

where the right hand side is computed by the Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X^{a n}, \Omega_{X^{a n}}^{p}\right) \Rightarrow H_{d R}^{p+q}\left(X^{a n}, \mathbb{C}\right)
$$

where $\Omega_{X^{a n}}^{p}$ stands for the sheaf of holomorphic p-forms on the analytic manifold $X^{a n}$.

Can we generalize this to other ground fields K ?

Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \rightsquigarrow

$$
H_{\text {sing }}^{n}(X(\mathbb{C}), \mathbb{C})=H_{d R}^{n}\left(X^{a n}, \mathbb{C}\right)
$$

where the right hand side is computed by the Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X^{a n}, \Omega_{X^{a n}}^{p}\right) \Rightarrow H_{d R}^{p+q}\left(X^{a n}, \mathbb{C}\right)
$$

where $\Omega_{X \text { an }}^{p}$ stands for the sheaf of holomorphic p-forms on the analytic manifold $X^{a n}$.

Can we generalize this to other ground fields K ?

- Étale cohomology can be regarded as the analogue of singular cohomology: they agree if $K=\mathbb{C}$ and the coefficients are finite (or, after taking the limit, p-adic).

Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \rightsquigarrow

$$
H_{\text {sing }}^{n}(X(\mathbb{C}), \mathbb{C})=H_{d R}^{n}\left(X^{a n}, \mathbb{C}\right)
$$

where the right hand side is computed by the Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X^{a n}, \Omega_{X^{a n}}^{p}\right) \Rightarrow H_{d R}^{p+q}\left(X^{a n}, \mathbb{C}\right)
$$

where $\Omega_{X \text { an }}^{p}$ stands for the sheaf of holomorphic p-forms on the analytic manifold $X^{a n}$.

Can we generalize this to other ground fields K ?

- Étale cohomology can be regarded as the analogue of singular cohomology: they agree if $K=\mathbb{C}$ and the coefficients are finite (or, after taking the limit, p-adic).
- In case of algebraic de Rham cohomology coefficients lie in K!

So we take $K=\mathbb{Q}_{p}$. Associated to the algebraic de Rham complex

$$
\Omega_{X}^{\dot{0}}: \mathcal{O}_{X} \xrightarrow{d} \Omega_{X}^{1} \xrightarrow{d} \Omega_{X}^{2} \rightarrow \cdots
$$

of sheaves (in the Zariski topology) of Kähler-differentials there is a Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X, \Omega_{X}^{p}\right) \Rightarrow H_{d R}^{p+q}(X / K)
$$

So we take $K=\mathbb{Q}_{p}$. Associated to the algebraic de Rham complex

$$
\Omega_{X}^{0}: \mathcal{O}_{X} \xrightarrow{d} \Omega_{X}^{1} \xrightarrow{d} \Omega_{X}^{2} \rightarrow \cdots
$$

of sheaves (in the Zariski topology) of Kähler-differentials there is a Hodge-to-de Rham spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(X, \Omega_{X}^{p}\right) \Rightarrow H_{d R}^{p+q}(X / K)
$$

For a p-adic Poincaré lemma to hold, one has to pass to a big field $\mathrm{B}_{d R}$ (which is a discretely valued field with residue field $\mathbb{C}_{p}=\widehat{\mathbb{Q}_{p}}$ admitting an action of $\mathcal{G}_{\mathbb{Q}_{p}}$) so one has an isomorphism (Faltings)

$$
H_{d R}^{i}\left(X / \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R} \xrightarrow{\sim} H_{e t}^{i}\left(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R}
$$

compatible with the filtration and the Galois action on both sides.

Taking $G_{\mathbb{Q}_{p}}$-invariants of the isomorphism above one obtains

$$
H_{d R}^{i}\left(X / \mathbb{Q}_{p}\right) \cong\left(H_{e t}^{i}\left(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R}\right)^{G_{\mathbb{Q}_{p}}}
$$

using the fact $\mathrm{B}_{d R}^{G_{\ell_{p}}}=\mathbb{Q}_{p}$.

Taking $G_{\mathbb{Q}_{p}}$-invariants of the isomorphism above one obtains

$$
H_{d R}^{i}\left(X / \mathbb{Q}_{p}\right) \cong\left(H_{e t}^{i}\left(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R}\right)^{G_{\mathbb{Q}_{p}}}
$$

using the fact $\mathrm{B}_{d R}^{G_{\mathbb{Q}_{p}}}=\mathbb{Q}_{p}$. By GAGA the two sides have the same dimension therefore we define a local p-adic Galois-representation V to be de Rham if we have $\operatorname{dim}_{\mathbb{Q}_{p}} D_{d R}(V)=\operatorname{dim}_{\mathbb{Q}_{p}} V$ where

$$
D_{d R}(V):=\left(V \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R}\right)^{G_{Q_{p}}} .
$$

de Rham representations

Taking $G_{\mathbb{Q}_{p}}$-invariants of the isomorphism above one obtains

$$
H_{d R}^{i}\left(X / \mathbb{Q}_{p}\right) \cong\left(H_{e t}^{i}\left(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{d R}\right)^{G_{\mathbb{Q}_{p}}}
$$

using the fact $B_{d R}^{G_{\mathbb{Q}_{p}}}=\mathbb{Q}_{p}$. By GAGA the two sides have the same dimension therefore we define a local p-adic Galois-representation V to be de Rham if we have $\operatorname{dim}_{\mathbb{Q}_{p}} D_{d R}(V)=\operatorname{dim}_{\mathbb{Q}_{p}} V$ where

$$
D_{d R}(V):=\left(V \otimes_{\mathbb{Q}_{p}} \mathrm{~B}_{d R}\right)^{G_{\mathbb{Q}_{p}}} .
$$

Problem: We cannot recover V from $D_{d R}(V)$! (even if V is de Rham)

Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_{E}:=\operatorname{Gal}(\bar{E} / E)$ over \mathbb{F}_{p}. By Hilbert's Theorem 90 we can trivialize V over \bar{E}, ie.

$$
\bar{E} \otimes_{\mathbb{F}_{p}} V \cong \bar{E}^{\operatorname{dim}_{\mathbb{F}_{p}} V} \cong \bar{E} \otimes_{E}\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}
$$

as G_{E}-modules. In particular, $D(V):=\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}$ has dimension $\operatorname{dim}_{\mathbb{F}_{p}} V$ over E.

Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_{E}:=\operatorname{Gal}(\bar{E} / E)$ over \mathbb{F}_{p}. By Hilbert's Theorem 90 we can trivialize V over \bar{E}, ie.

$$
\bar{E} \otimes_{\mathbb{F}_{p}} V \cong \bar{E}^{\operatorname{dim}_{\mathbb{F}_{p}} V} \cong \bar{E} \otimes_{E}\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}
$$

as G_{E}-modules. In particular, $D(V):=\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}$ has dimension $\operatorname{dim}_{\mathbb{F}_{p}} V$ over E.

New feature: We can recover V from $D(V)$!

Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_{E}:=\operatorname{Gal}(\bar{E} / E)$ over \mathbb{F}_{p}. By Hilbert's Theorem 90 we can trivialize V over \bar{E}, ie.

$$
\bar{E} \otimes_{\mathbb{F}_{p}} V \cong \bar{E}^{\operatorname{dim}_{\mathbb{F}_{p}} V} \cong \bar{E} \otimes_{E}\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}
$$

as G_{E}-modules. In particular, $D(V):=\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}$ has dimension $\operatorname{dim}_{\mathbb{F}_{p}} V$ over E.

$$
\text { New feature: We can recover } V \text { from } D(V) \text { ! }
$$

Key extra structure: in characteristic p the Frobenius Frob $: \bar{E} \rightarrow \bar{E}$ has fixed field \mathbb{F}_{p}.

Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_{E}:=\operatorname{Gal}(\bar{E} / E)$ over \mathbb{F}_{p}. By Hilbert's Theorem 90 we can trivialize V over \bar{E}, ie.

$$
\bar{E} \otimes_{\mathbb{F}_{p}} V \cong \bar{E}^{\operatorname{dim}_{\mathbb{F}_{p}} V} \cong \bar{E} \otimes_{E}\left(\bar{E} \otimes_{\mathbb{F}_{p}} V\right)^{G_{E}}
$$

as G_{E}-modules. In particular, $D(V):=\left(\bar{E} \otimes_{\mathbb{F}_{P}} V\right)^{G_{E}}$ has dimension $\operatorname{dim}_{\mathbb{F}_{p}} V$ over E.

$$
\text { New feature: We can recover } V \text { from } D(V) \text { ! }
$$

Key extra structure: in characteristic p the Frobenius Frob $_{p}: \bar{E} \rightarrow \bar{E}$ has fixed field \mathbb{F}_{p}.
Put $\varphi:=\operatorname{Frob}_{p} \otimes i d_{V}: \bar{E} \otimes_{\mathbb{F}_{p}} V \rightarrow \bar{E} \otimes_{\mathbb{F}_{p}} V$ so we have $V=\left(\bar{E} \otimes_{E} D(V)\right)^{\varphi=i d}$.

How to pass from char 0 to char p ?

Tilting equivalence of Scholze!

How to pass from char 0 to char p ?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: "norm fields" (1979)

How to pass from char 0 to char p ?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: "norm fields" (1979)
- Scholze (~ 2012) extended the notion and made it more geometric

Definition

Let K be a field that is complete with respect to a nonarchimedean nondiscrete valuation $|\cdot|: K \rightarrow \mathbb{R}^{\geq 0}$. We say that K is perfectoid if the p-Frobenius map Frob $_{p}: \mathcal{O}_{K} /(p) \rightarrow \mathcal{O}_{K} /(p)$ is surjective.

How to pass from char 0 to char p ?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: "norm fields" (1979)
- Scholze (~ 2012) extended the notion and made it more geometric

Definition

Let K be a field that is complete with respect to a nonarchimedean nondiscrete valuation $|\cdot|: K \rightarrow \mathbb{R}^{\geq 0}$. We say that K is perfectoid if the p-Frobenius map $\operatorname{Frob}_{p}: \mathcal{O}_{K} /(p) \rightarrow \mathcal{O}_{K} /(p)$ is surjective.

Examples: $\left.\mathbb{C}_{p}, \widehat{\mathbb{Q}_{p}\left(\mu_{p} \infty\right.}\right), ~ \mathbb{Q}_{p} \widehat{\left(p^{1 / p^{\infty}}\right)}, \mathbb{F}_{p}\left(\widehat{\left(\left(T^{1 / p} p^{\infty}\right)\right)}\right.$ but not \mathbb{Q}_{p} (valuation is discrete!).

Tilting equivalence

Let K be a perfectoid field. The perfectoid field $K^{b}:=\operatorname{Frac}\left(\mathcal{O}_{K^{b}}\right)$ of characteristic p is called the tilt of K where

$$
\mathcal{O}_{K^{b}}:=\lim _{\operatorname{Frob}_{p}: \mathcal{O}_{K} \overleftarrow{/(p) \rightarrow \mathcal{O}_{K} /(p)}} \mathcal{O}_{K} /(p) .
$$

Tilting equivalence

Let K be a perfectoid field. The perfectoid field $K^{b}:=\operatorname{Frac}\left(\mathcal{O}_{K^{b}}\right)$ of characteristic p is called the tilt of K where

$$
\mathcal{O}_{K^{b}}:={\underset{\text { Frob }}{p}:}^{\lim _{K} \overleftarrow{/(p) \rightarrow \mathcal{O}_{K} /(p)}} \mathcal{O}_{K} /(p) .
$$

Theorem (Tilting equivalence of Scholze)
Let K be a perfectoid field. Then the functor $b: L \mapsto L^{b}$ gives an equivalence of categories between perfectoid extensions of K and perfectoid extensions of K^{b}. Moreover, if L / K is finite separable then L is perfectoid (baby case of almost purity).

Tilting equivalence

Let K be a perfectoid field. The perfectoid field $K^{b}:=\operatorname{Frac}\left(\mathcal{O}_{K^{b}}\right)$ of characteristic p is called the tilt of K where

$$
\mathcal{O}_{K^{b}}:=\lim _{\operatorname{Frob}_{p}: \mathcal{O}_{K} \overleftarrow{/(p) \rightarrow \mathcal{O}_{K} /(p)}} \mathcal{O}_{K} /(p) .
$$

Theorem (Tilting equivalence of Scholze)
Let K be a perfectoid field. Then the functor $b: L \mapsto L^{b}$ gives an equivalence of categories between perfectoid extensions of K and perfectoid extensions of K^{b}. Moreover, if L / K is finite separable then L is perfectoid (baby case of almost purity).

Corollary

We have $G_{K} \cong G_{K^{b}}$ and if K is the completion of a Galois extension of \mathbb{Q}_{p} then we have $\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right) \hookrightarrow \operatorname{Aut}\left(K^{b}\right)$.
p-adic local Galois reps and perfect (φ, Γ)-modules

Let K be a perfectoid field (of char 0)
$\left\{\bmod p\right.$ reps of $\left.G_{K}\right\} \leftrightarrow\left\{\bmod p\right.$ reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-modules $\left./ K^{b}\right\}$
p-adic local Galois reps and perfect (φ, Γ)-modules

Let K be a perfectoid field (of char 0)
$\left\{\bmod p\right.$ reps of $\left.G_{K}\right\} \leftrightarrow\left\{\bmod p\right.$ reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-modules $\left./ K^{b}\right\}$
By taking Witt vectors and inverting p we also have
$\left\{p\right.$-adic reps of $\left.G_{K}\right\} \leftrightarrow\left\{p\right.$-adic reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-mods $\left./ W\left(K^{b}\right)\left[p^{-1}\right]\right\}$
p-adic local Galois reps and perfect (φ, Γ)-modules

Let K be a perfectoid field (of char 0)
$\left\{\bmod p\right.$ reps of $\left.G_{K}\right\} \leftrightarrow\left\{\bmod p\right.$ reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-modules $\left./ K^{b}\right\}$
By taking Witt vectors and inverting p we also have
$\left\{p\right.$-adic reps of $\left.G_{K}\right\} \leftrightarrow\left\{p\right.$-adic reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-mods $\left./ W\left(K^{b}\right)\left[p^{-1}\right]\right\}$
What about reps of $G_{\mathbb{Q}_{p}}$?
p-adic local Galois reps and perfect (φ, Γ)-modules

Let K be a perfectoid field (of char 0)
$\left\{\bmod p\right.$ reps of $\left.G_{K}\right\} \leftrightarrow\left\{\bmod p\right.$ reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-modules $\left./ K^{b}\right\}$
By taking Witt vectors and inverting p we also have
$\left\{p\right.$-adic reps of $\left.G_{K}\right\} \leftrightarrow\left\{p\right.$-adic reps of $\left.G_{K b}\right\} \leftrightarrow\left\{\varphi\right.$-mods $\left./ W\left(K^{b}\right)\left[p^{-1}\right]\right\}$
What about reps of $G_{\mathbb{Q}_{p}}$? Pick a Galois extension $K_{\circ} / \mathbb{Q}_{p}$ such that $K:=\widehat{K_{o}}$ is perfectoid. E.g. take $K_{\circ}:=\mathbb{Q}_{p}\left(\mu_{p} \infty\right)$ and $\Gamma:=\operatorname{Gal}\left(K_{\circ} / \mathbb{Q}_{p}\right)$ whence

$$
\left\{p \text {-adic reps of } G_{\mathbb{Q}_{p}}\right\} \leftrightarrow\left\{(\varphi, \Gamma) \text {-modules } / W\left(K^{b}\right)\left[p^{-1}\right]\right\}
$$

p-adic local Galois reps and perfect (φ, Γ)-modules

Let K be a perfectoid field (of char 0)
$\left\{\bmod p\right.$ reps of $\left.G_{K}\right\} \leftrightarrow\left\{\bmod p\right.$ reps of $\left.G_{K^{b}}\right\} \leftrightarrow\left\{\varphi\right.$-modules $\left./ K^{b}\right\}$
By taking Witt vectors and inverting p we also have
$\left\{p\right.$-adic reps of $\left.G_{K}\right\} \leftrightarrow\left\{p\right.$-adic reps of $\left.G_{K b}\right\} \leftrightarrow\left\{\varphi\right.$-mods $\left./ W\left(K^{b}\right)\left[p^{-1}\right]\right\}$
What about reps of $\mathcal{G}_{\mathbb{Q}_{p}}$? Pick a Galois extension K_{o} / \mathbb{Q}_{p} such that $K:=\widehat{K_{0}}$ is perfectoid. E.g. take $K_{0}:=\mathbb{Q}_{p}\left(\mu_{p} \infty\right)$ and $\Gamma:=\mathrm{Gal}\left(K_{o} / \mathbb{Q}_{p}\right)$ whence

$$
\left\{p \text {-adic reps of } G_{\mathbb{Q}_{p}}\right\} \leftrightarrow\left\{(\varphi, \Gamma) \text {-modules } / W\left(K^{b}\right)\left[p^{-1}\right]\right\}
$$

New feature (Scholze): There is a geometric object $\operatorname{Spd}\left(\mathbb{Q}_{p}\right)$ in characteristic p with étale fundamental group $G_{\mathbb{Q}_{p}}$: formal orbit space of Γ-action on $\left.\mathrm{Spa}\left(\widehat{\mathbb{Q}_{p}\left(\mu_{p} \infty\right.}\right)^{b}\right)$ in the category of diamonds.

Imperfect (φ, Γ)-modules

We have $\widehat{\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)^{b}}=\mathbb{F}_{p}\left(\widehat{\left(\left(T^{1 / p^{\infty}}\right)\right)}\right.$ —one could, for most purposes, work with (φ, Γ)-modules over these. But e.g. for the p-adic Langlands programme one needs imperfect ground fields.

Imperfect (φ, Γ)-modules

We have $\widehat{\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)}{ }^{b}=\mathbb{F}_{p} \widehat{\left(\left(T^{1 / p^{\infty}}\right)\right) \text {-one could, for most purposes, }}$ work with (φ, Γ)-modules over these. But e.g. for the p-adic Langlands programme one needs imperfect ground fields.
Observation: we have $G_{\mathbb{F}_{p}((T))} \cong G_{\mathbb{F}_{p}\left(\left(T^{1 / p} p^{\infty}\right)\right)} \rightsquigarrow$

$$
\left\{\bmod p \text { reps of } \mathcal{G}_{\mathbb{Q}_{p}}\right\} \leftrightarrow\left\{(\varphi, \Gamma) \text {-modules } / \mathbb{F}_{p}((T))\right\}
$$

We have $\left.\widehat{\mathbb{Q}_{p}\left(\mu_{p}\right)}\right)^{b}=\mathbb{F}_{p}\left(\widehat{\left.\left(T^{1 / p^{\infty}}\right)\right) \text { —one could, for most purposes, }}\right.$ work with (φ, Γ)-modules over these. But e.g. for the p-adic Langlands programme one needs imperfect ground fields.
Observation: we have $G_{\mathbb{F}_{p}((T))} \cong G_{\mathbb{F}_{p}\left(\left(\widehat{T^{1 / p}}\right)\right)} \rightsquigarrow$

$$
\left\{\bmod p \text { reps of } G_{\mathbb{Q}_{p}}\right\} \leftrightarrow\left\{(\varphi, \Gamma) \text {-modules } / \mathbb{F}_{p}((T))\right\}
$$

and

$$
\left\{p \text {-adic reps of } G_{\mathbb{Q}_{p}}\right\} \leftrightarrow\{\text { étale }(\varphi, \Gamma) \text {-modules } / \mathcal{E}\}
$$

where we put $\mathcal{E}:=\mathcal{O}_{\mathcal{E}}\left[p^{-1}\right]$ and $\mathcal{O}_{\mathcal{E}}:=\lim _{n} \mathbb{Z} /\left(p^{n}\right)((T))$. Étale means: id $\otimes \varphi: \mathcal{E} \otimes_{\mathcal{E}, \varphi} D \rightarrow D$ is bijective (note:
Frob $_{p}: \mathbb{F}_{p}((T)) \rightarrow \mathbb{F}_{p}((T))$ is no longer bijective!) This is
Fontaine's equivalence of categories (1990).

Let V be a p-adic representation of $G_{\mathbb{Q}_{p}}$ and put $D(V)$ for the corresponding (φ, Γ)-module over \mathcal{E}. In order to recover $D_{d R}(V)=\left(\mathrm{B}_{d R} \otimes_{\mathbb{Q}_{p}} V\right)^{G_{\mathbb{Q}_{p}}}$ from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere.

Let V be a p-adic representation of $G_{\mathbb{Q}_{p}}$ and put $D(V)$ for the corresponding (φ, Γ)-module over \mathcal{E}. In order to recover $D_{d R}(V)=\left(\mathrm{B}_{d R} \otimes_{\mathbb{Q}_{p}} V\right)^{G_{\mathbb{Q}_{p}}}$ from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere. Put

$$
\begin{array}{r}
\mathcal{R}^{(r, 1)}:=\left\{f(T)=\sum_{i=-\infty}^{\infty} a_{i} T^{i} \mid a_{i} \in \mathbb{Q}_{p}, f \text { converges if } r<|T|_{p}<1\right\} \\
\mathcal{R}:=\bigcup_{0<r<1} \mathcal{R}^{(r, 1)} \quad \mathcal{E}^{\dagger}:=\left\{\left.f \in \mathcal{R}\left|\limsup _{|T|_{p} \rightarrow 1}\right| f(T)\right|_{p}<\infty\right\}
\end{array}
$$

Note: \mathcal{E}^{\dagger} embeds into \mathcal{E} (but \mathcal{R} does note).
p-adic Hodge theory via (φ,\ulcorner)-modules

Let V be a p-adic representation of $G_{\mathbb{Q}_{p}}$ and put $D(V)$ for the corresponding (φ, Γ)-module over \mathcal{E}. In order to recover $D_{d R}(V)=\left(\mathrm{B}_{d R} \otimes_{\mathbb{Q}_{p}} V\right)^{G_{\mathbb{Q}_{p}}}$ from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere. Put

$$
\begin{array}{r}
\mathcal{R}^{(r, 1)}:=\left\{f(T)=\sum_{i=-\infty}^{\infty} a_{i} T^{i} \mid a_{i} \in \mathbb{Q}_{p}, f \text { converges if } r<|T|_{p}<1\right\} \\
\mathcal{R}:=\bigcup_{0<r<1} \mathcal{R}^{(r, 1)} \quad \mathcal{E}^{\dagger}:=\left\{\left.f \in \mathcal{R}\left|\limsup _{|T|_{p} \rightarrow 1}\right| f(T)\right|_{p}<\infty\right\}
\end{array}
$$

Note: \mathcal{E}^{\dagger} embeds into \mathcal{E} (but \mathcal{R} does note).
Theorem (Cherbonnier-Colmez: overconergence)
$D(V)$ descends to an étale (φ, Γ)-module $D^{\dagger}(V)$ over \mathcal{E}^{\dagger}.

Theorem (Berger)

Put $D^{\text {rig }}(V):=\mathcal{R} \otimes_{\mathcal{E}^{\dagger}} D^{\dagger}(V)$ and
$t:=\log (1+T)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{T^{k}}{k} \in \mathcal{R}$. Then there exists a p-adic differential equation $\left(\mathbb{Q}_{p}\left(\mu_{p} \infty\right) \llbracket t \rrbracket\right.$-module with Γ-action) $D^{\text {dif }}(V)$ associated to $D^{\text {rig }}(V)$ such that we have

$$
D_{d R}(V)=D^{d i f}(V)^{\ulcorner } .
$$

Theorem (Berger)

Put $D^{\text {rig }}(V):=\mathcal{R} \otimes_{\mathcal{E}^{\dagger}} D^{\dagger}(V)$ and
$t:=\log (1+T)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{T^{k}}{k} \in \mathcal{R}$. Then there exists a p-adic differential equation $\left(\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right) \llbracket t \rrbracket\right.$-module with Γ-action) $D^{\text {dif }}(V)$ associated to $D^{\text {rig }}(V)$ such that we have

$$
D_{d R}(V)=D^{d i f}(V)^{\ulcorner } .
$$

Most applications use: for ? = rig, \dagger, or empty Herr's complex below computes Galois cohomology:

$$
0 \rightarrow D^{?}(V) \xrightarrow{(\varphi-i d, \gamma-i d)} D^{?}(V) \oplus D^{?}(V) \xrightarrow{(i d-\gamma, \varphi-i d)} D^{?}(V) \rightarrow 0 .
$$

Motivation: generalize Colmez' functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$:

$$
1+T \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \varphi \leftrightarrow\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right) \quad \Gamma \leftrightarrow\left(\begin{array}{cc}
\mathbb{Z}_{P}^{\times} & 0 \\
0 & 1
\end{array}\right)
$$

Motivation: generalize Colmez' functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$:

$$
1+T \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \varphi \leftrightarrow\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \quad \Gamma \leftrightarrow\left(\begin{array}{cc}
\mathbb{Z}_{p}^{\times} & 0 \\
0 & 1
\end{array}\right)
$$

\rightsquigarrow functor from smooth (ie. stabilizers are open) $\bmod p^{n}$ representations $\mapsto \bmod p^{n}$ étale (φ, Γ)-modules $\stackrel{\text { Fontaine }}{\longrightarrow} \bmod p^{n}$ local Galois representations.

Motivation: generalize Colmez' functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$:

$$
1+T \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \varphi \leftrightarrow\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right) \quad \Gamma \leftrightarrow\left(\begin{array}{cc}
\mathbb{Z}_{p}^{\times} & 0 \\
0 & 1
\end{array}\right)
$$

\rightsquigarrow functor from smooth (ie. stabilizers are open) mod p^{n} representations $\mapsto \bmod p^{n}$ étale (φ, Γ)-modules $\stackrel{\text { Fontaine }}{\mapsto} \bmod p^{n}$ local Galois representations.
If there is a generalization to groups of higher rank (e.g. $G L L_{n}\left(\mathbb{Q}_{p}\right)$ with $n>2$) it is natural to expect that "multivariable" objects come into picture.

Motivation: generalize Colmez' functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$:

$$
1+T \leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \varphi \leftrightarrow\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \quad \Gamma \leftrightarrow\left(\begin{array}{cc}
\mathbb{Z}_{p}^{\times} & 0 \\
0 & 1
\end{array}\right)
$$

\rightsquigarrow functor from smooth (ie. stabilizers are open) mod p^{n} representations $\mapsto \bmod p^{n}$ étale (φ, Γ)-modules $\stackrel{\text { Fontaine }}{\mapsto} \bmod p^{n}$ local Galois representations.
If there is a generalization to groups of higher rank (e.g. $G L_{n}\left(\mathbb{Q}_{p}\right)$ with $n>2$) it is natural to expect that "multivariable" objects come into picture. Hint (Breuil-Herzig-Schraen): A generalized Colmez functor applied to the automorphic $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-representation attached to a mod p (global) Galois representation ρ (the corresponding Hecke-isotypical component in the cohomology of a Shimura-variety) should not give ρ back but $\bigotimes_{i=1}^{n} \Lambda^{i} \rho$.

Theorem (Z, Carter-Kedlaya-Z)
Let Δ be a finite set and put $\mathcal{Q}_{\mathbb{Q}_{p}, \Delta}:=\prod_{\alpha \in \Delta} \mathcal{G}_{\mathbb{Q}_{p}}$. There is an equivalence of categories

$$
\left\{p \text {-adic reps of } \mathcal{G}_{\mathbb{Q}_{p}, \Delta}\right\} \leftrightarrow\left\{\text { étale }\left(\varphi_{\Delta}, \Gamma_{\Delta}\right) \text {-modules over } \mathcal{E}_{\Delta}\right\}
$$ where $\varphi_{\Delta}=\left(\varphi_{\alpha} \mid \alpha \in \Delta\right)$ (one Frobenius lift for each variable), $\Gamma_{\Delta}:=\prod_{\alpha \in \Delta}\left\ulcorner, \mathcal{E}_{\Delta}:=\mathcal{O}_{\varepsilon_{\Delta}}\left[p^{-1}\right]\right.$ and $\mathcal{O}_{\mathcal{E}_{\Delta}}:=\lim _{n} \mathbb{Z} /\left(p^{n}\right) \llbracket T_{\alpha} \mid \alpha \in \Delta \rrbracket \llbracket\left[\prod_{\alpha \in \Delta} T_{\alpha}^{-1}\right]$.

Theorem (Z, Carter-Kedlaya-Z)

Let Δ be a finite set and put $\mathcal{Q}_{\mathbb{Q}_{p}, \Delta}:=\prod_{\alpha \in \Delta} \mathcal{G}_{\mathbb{Q}_{p}}$. There is an equivalence of categories

$$
\left\{p \text {-adic reps of } \mathcal{G}_{\mathbb{Q}_{p}, \Delta}\right\} \leftrightarrow\left\{\text { étale }\left(\varphi_{\Delta}, \Gamma_{\Delta}\right) \text {-modules over } \mathcal{E}_{\Delta}\right\}
$$

where $\varphi_{\Delta}=\left(\varphi_{\alpha} \mid \alpha \in \Delta\right)$ (one Frobenius lift for each variable), $\Gamma_{\Delta}:=\prod_{\alpha \in \Delta}\left\ulcorner, \mathcal{E}_{\Delta}:=\mathcal{O}_{\mathcal{E}_{\Delta}}\left[p^{-1}\right]\right.$ and $\mathcal{O}_{\varepsilon_{\Delta}}:=\lim _{n} \mathbb{Z} /\left(p^{n}\right) \llbracket T_{\alpha} \mid \alpha \in \Delta \rrbracket \llbracket\left[\prod_{\alpha \in \Delta} T_{\alpha}^{-1}\right]$.

Theorem (Z)

There is a right exact functor compatible with parabolic induction and tensor products from the category of smooth mod p^{n} representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ to the category of $\bmod p^{n}$ representations of $G_{\mathbb{Q}_{p}}^{n-1} \times \mathbb{Q}_{p}^{\times}$. In case of $n=2$ this agrees with Colmez' functor realizing p-adic Langlands for $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$.

Methods of proof (Carter-Kedlaya-Z)

Recall: $\pi_{1}\left(\operatorname{Spd}\left(\mathbb{Q}_{p}\right)\right) \cong G_{\mathbb{Q}_{p}}$.

Methods of proof (Carter-Kedlaya-Z)

Recall: $\pi_{1}\left(\operatorname{Spd}\left(\mathbb{Q}_{p}\right)\right) \cong G_{\mathbb{Q}_{p}}$. Analogue of Künneth Theorem $\pi_{1}\left(X_{1} \times X_{2}\right) \cong \pi_{1}\left(X_{1}\right) \times \pi_{1}\left(X_{2}\right)$ for pointed topological spaces in characteristic p geometry?
Spec $k \times$ Spec $k=$ Spec k but diag: $G_{k} \rightarrow G_{k} \times G_{k}$ is not an isomorphism...

Recall: $\pi_{1}\left(\operatorname{Spd}\left(\mathbb{Q}_{p}\right)\right) \cong G_{\mathbb{Q}_{p}}$. Analogue of Künneth Theorem $\pi_{1}\left(X_{1} \times X_{2}\right) \cong \pi_{1}\left(X_{1}\right) \times \pi_{1}\left(X_{2}\right)$ for pointed topological spaces in characteristic p geometry?
Spec $k \times$ Spec $k=$ Spec k but diag: $G_{k} \rightarrow G_{k} \times G_{k}$ is not an isomorphism...
Let X_{1}, \ldots, X_{n} be connected schemes of finite type $/ \mathbb{F}_{p}$ and put $X:=X_{1} \times \cdots \times X_{n}$. Let $\varphi_{i}=1 \times \cdots \times \varphi_{X_{i}} \times \cdots \times 1: X \rightarrow X$ be the i th partial Frobenius and denote by $\operatorname{FEt}(X / \Phi)$ the category of finite étale maps $Y \rightarrow X$ equipped with commuting isomorphisms $\beta_{i}: Y \rightarrow \varphi_{i}^{*} Y$ such that the "composite" $\beta_{n} \circ \cdots \circ \beta_{1}$ is the relative Frobenius $\varphi_{Y / X}$.

Methods of proof (Carter-Kedlaya-Z)

Recall: $\pi_{1}\left(\operatorname{Spd}\left(\mathbb{Q}_{p}\right)\right) \cong G_{\mathbb{Q}_{p}}$. Analogue of Künneth Theorem $\pi_{1}\left(X_{1} \times X_{2}\right) \cong \pi_{1}\left(X_{1}\right) \times \pi_{1}\left(X_{2}\right)$ for pointed topological spaces in characteristic p geometry?
Spec $k \times$ Spec $k=$ Spec k but diag: $G_{k} \rightarrow G_{k} \times G_{k}$ is not an isomorphism...
Let X_{1}, \ldots, X_{n} be connected schemes of finite type $/ \mathbb{F}_{p}$ and put $X:=X_{1} \times \cdots \times X_{n}$. Let $\varphi_{i}=1 \times \cdots \times \varphi_{X_{i}} \times \cdots \times 1: X \rightarrow X$ be the i th partial Frobenius and denote by $\operatorname{FEt}(X / \Phi)$ the category of finite étale maps $Y \rightarrow X$ equipped with commuting isomorphisms $\beta_{i}: Y \rightarrow \varphi_{i}^{*} Y$ such that the "composite" $\beta_{n} \circ \cdots \circ \beta_{1}$ is the relative Frobenius $\varphi_{Y / X}$. Then we have

Drinfeld's lemma for schemes
$\pi_{1}(X / \Phi) \cong \pi_{1}\left(X_{1}\right) \times \cdots \times \pi_{1}\left(X_{n}\right)$.

Methods of proof (Carter-Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact, quasi-separated diamonds X_{i} (due to Scholze and Kedlaya).

Methods of proof (Carter-Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact, quasi-separated diamonds X_{i} (due to Scholze and Kedlaya).
Technical problem: $\operatorname{Spd}\left(\mathbb{Q}_{p}\right)^{n}=\left(\operatorname{Spa}\left(\widetilde{\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)}\right)^{b}\right)^{n} / \Gamma^{n}$, but $\left(\operatorname{Spa}\left(\widetilde{\left.\left.\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)\right)^{b}\right)^{n} \text { is not an "affine diamond", ie. it is not the }}\right.\right.$ diamond spectrum of our (perfect) coefficient ring $R:=R^{+}\left[\left(T_{1} \cdots T_{n}\right)^{-1}\right]$ where

$$
R^{+}:=\underset{r}{\lim }\left(\mathbb{F}_{p} \llbracket T_{1}^{p^{-\infty}} \rrbracket \otimes_{\mathbb{F}_{p}} \cdots \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p} \llbracket T_{n}^{p^{-\infty}} \rrbracket\right) /\left(T_{1}, \ldots, T_{n}\right)^{r}
$$

but the rational subspace defined by

$$
\left\{\left|T_{1}\right|<1, \ldots,\left|T_{n}\right|<1\right\} .
$$

Methods of proof (Carter-Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact, quasi-separated diamonds X_{i} (due to Scholze and Kedlaya).
Technical problem: $\left.\operatorname{Spd}\left(\mathbb{Q}_{p}\right)^{n}=\left(\operatorname{Spa}\left(\widehat{\mathbb{Q}_{p}\left(\mu_{p} \infty\right.}\right)\right)^{b}\right)^{n} / \Gamma^{n}$, but $\left(\operatorname{Spa}\left(\widehat{\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)}\right)^{b}\right)^{n}$ is not an "affine diamond", ie. it is not the diamond spectrum of our (perfect) coefficient ring $R:=R^{+}\left[\left(T_{1} \cdots T_{n}\right)^{-1}\right]$ where

$$
R^{+}:=\underset{r}{\lim }\left(\mathbb{F}_{p} \llbracket T_{1}^{p^{-\infty}} \rrbracket \otimes_{\mathbb{F}_{p}} \cdots \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p} \llbracket T_{n}^{p^{-\infty}} \rrbracket\right) /\left(T_{1}, \ldots, T_{n}\right)^{r}
$$

but the rational subspace defined by

$$
\left\{\left|T_{1}\right|<1, \ldots,\left|T_{n}\right|<1\right\}
$$

Need: "Perfectoid Riemann Extension Theorem"+"imperfection".

Methods of proof (Carter-Kedlaya-Z) cont'd

Analogue of Drinfeld's Lemma holds for connected, quasi-compact, quasi-separated diamonds X_{i} (due to Scholze and Kedlaya).
Technical problem: $\left.\operatorname{Spd}\left(\mathbb{Q}_{p}\right)^{n}=\left(\operatorname{Spa}\left(\widehat{\mathbb{Q}_{p}\left(\mu_{p} \infty\right.}\right)\right)^{b}\right)^{n} / \Gamma^{n}$, but $\left(\operatorname{Spa}\left(\widehat{\left.\left.\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right)\right)^{b}\right)^{n} \text { is not an "affine diamond", ie. it is not the }}\right.\right.$ diamond spectrum of our (perfect) coefficient ring $R:=R^{+}\left[\left(T_{1} \cdots T_{n}\right)^{-1}\right]$ where
but the rational subspace defined by

$$
\left\{\left|T_{1}\right|<1, \ldots,\left|T_{n}\right|<1\right\} .
$$

Need: "Perfectoid Riemann Extension Theorem"+"imperfection". Holds also for possibly distinct finite extensions K_{1}, \ldots, K_{n} of \mathbb{Q}_{p}.

Further results and possible future directions

- (Pal-Z) Generalization of Herr's complex still computes group cohomology of $G_{\mathbb{Q}_{p}, \Delta}$.

Further results and possible future directions

- (Pal-Z) Generalization of Herr's complex still computes group cohomology of $G_{\mathbb{Q}_{p}, \Delta}$.
- (Pal-Z, Carter-Kedlaya-Z) Multivariable $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules are overconvergent.

Further results and possible future directions

- (Pal-Z) Generalization of Herr's complex still computes group cohomology of $G_{\mathbb{Q}_{p}, \Delta}$.
- (Pal-Z, Carter-Kedlaya-Z) Multivariable $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules are overconvergent.

Future directions:

- Pass to the Robba ring and construct Bloch-Kato exponential maps and Perrin-Riou's big exponential maps in this product situation $\stackrel{?}{\rightsquigarrow}$ prove classical ε-isomorphisms (etc.?) for p-adic representations of the form $V_{1} \otimes \mathbb{Q}_{p} V_{2}$ if it is known for both V_{1} and V_{2}.

Further results and possible future directions

- (Pal-Z) Generalization of Herr's complex still computes group cohomology of $G_{\mathbb{Q}_{p}, \Delta}$.
- (Pal-Z, Carter-Kedlaya-Z) Multivariable $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules are overconvergent.

Future directions:

- Pass to the Robba ring and construct Bloch-Kato exponential maps and Perrin-Riou's big exponential maps in this product situation $\stackrel{?}{\rightsquigarrow}$ prove classical ε-isomorphisms (etc.?) for p-adic representations of the form $V_{1} \otimes \mathbb{Q}_{p} V_{2}$ if it is known for both V_{1} and V_{2}.
- Relate these notions to Berger's Lubin-Tate multivariable (φ, Γ)-modules $\stackrel{?}{\sim}$ better structural properties of the latter

Thanks for your attention!

