p-adic Galois representations

Gergely Zábrádi
Eötvös Loránd University, Budapest, Institute of Mathematics
zger@cs.elte.hu
Talk at Heidelberg

6th June 2019
Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry.

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1} \quad (\Re(s) > 1)
\]

Encoded arithmetic information:
- Distribution of primes: zeros in the critical strip $0 < \Re(s) < 1$
- Arithmetic of cyclotomic fields $\mathbb{Q}(\mu_p)$: special values $\zeta(-1), \zeta(-3), ..., \zeta(2-p)$ $\mapsto p$-adic \(\zeta\)-function by p-adic interpolation

Need analytic continuation and functional equation!
Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann’s ζ-function

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - \frac{1}{p^s}} \quad (\text{Re}(s) > 1)$$
Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann’s ζ-function

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\text{prime } p} \frac{1}{1 - \frac{1}{p^s}} \quad (\text{Re}(s) > 1)$$

Encoded arithmetic information:
Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann’s \(\zeta \)-function

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\text{prime } p} \frac{1}{1 - \frac{1}{p^s}} \quad (\text{Re}(s) > 1)
\]

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip \(0 < \text{Re}(s) < 1 \)
\(L\)-functions in arithmetic geometry

\(p\)-adic Galois representations

6th June 2019 2 / 23

Riemann’s zeta function

\(L\)-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann’s \(\zeta\)-function

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{\text{prime } p} \frac{1}{1 - \frac{1}{p^s}} \quad (\text{Re}(s) > 1)
\]

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip \(0 < \text{Re}(s) < 1\)
- Arithmetic of cyclotomic fields \(\mathbb{Q}(\mu_p)\): special values \(\zeta(-1), \zeta(-3), \ldots, \zeta(2 - p) \leadsto "p\)-adic \(\zeta\)-function” by \(p\)-adic interpolation
Riemann’s zeta function

L-functions are attached to various objects in arithmetic geometry. Simplest example: Riemann’s ζ-function

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - \frac{1}{p^s}} \quad (\Re(s) > 1)$$

Encoded arithmetic information:

- Distribution of primes: zeros in the critical strip $0 < \Re(s) < 1$
- Arithmetic of cyclotomic fields $\mathbb{Q}(\mu_p)$: special values $\zeta(-1), \zeta(-3), \ldots, \zeta(2-p)$ \leadsto “p-adic ζ-function” by p-adic interpolation

Need analytic continuation and functional equation!
Elliptic curves

Let E be an elliptic curve defined over \mathbb{Q}.
Elliptic curves

Let E be an elliptic curve defined over \mathbb{Q}.

$L(E, s) := \prod_{p \text{ prime}} \frac{1}{P_{E,p}(p^{-s})}$

$(\text{Re}(s) > 2)$

$P_{E,p}(T) = 1 - a_p T + p T^2$ if E has good reduction at p

where

$\#E(\mathbb{F}_p) = P_{E,p}(1) = 1 - a_p + p$.

Encoded arithmetic information:

Number of mod p points $E(\mathbb{F}_p)$

Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) – weak form

$L(E, 1) = 0$ if and only if $\#E(\mathbb{Q}) = \infty$.

Analytic continuation in this case: Taniyama–Shimura–Weil conjecture (proven by Wiles and Taylor (1993)).
Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow$ L-function

$$L(E, s) := \prod_{p \text{ prime}} \frac{1}{P_{E,p}(p^{-s})} \quad (\Re(s) > 2)$$

$$P_{E,p}(T) = 1 - a_p T + pT^2 \quad \text{if } E \text{ has good reduction at } p$$

where

$$\#E(\mathbb{F}_p) = P_{E,p}(1) = 1 - a_p + p.$$

Encoded arithmetic information:
Elliptic curves

Let E be an elliptic curve defined over \mathbb{Q} \(\leadsto\) L-function

\[
L(E, s) := \prod_{p \text{ prime}} \frac{1}{P_{E,p}(p^{-s})} \quad \text{(Re}(s) > 2)
\]

\[
P_{E,p}(T) = 1 - a_p T + p T^2 \quad \text{if } E \text{ has good reduction at } p
\]

where

\[
\#E(\mathbb{F}_p) = P_{E,p}(1) = 1 - a_p + p.
\]

Encoded arithmetic information:

- Number of mod p points $E(\mathbb{F}_p)$
Elliptic curves

Let E be an elliptic curve defined over \mathbb{Q} such that L-function

$$L(E, s) := \prod_{p \text{ prime}} \frac{1}{P_{E,p}(p^{-s})}$$

where

$$P_{E,p}(T) = 1 - a_p T + p T^2$$

if E has good reduction at p

where

$$\#E(\mathbb{F}_p) = P_{E,p}(1) = 1 - a_p + p.$$

Encoded arithmetic information:

- Number of mod p points $E(\mathbb{F}_p)$
- Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) – weak form

$L(E, 1) = 0$ if and only if $\#E(\mathbb{Q}) = \infty.$
Elliptic curves

Let E be an elliptic curve defined over $\mathbb{Q} \rightsquigarrow L$-function

$$L(E, s) := \prod_{p \text{ prime}} \frac{1}{P_{E,p}(p^{-s})} \quad (\text{Re}(s) > 2)$$

$$P_{E,p}(T) = 1 - a_p T + pT^2 \quad \text{if } E \text{ has good reduction at } p$$

where

$$\#E(\mathbb{F}_p) = P_{E,p}(1) = 1 - a_p + p.$$

Encoded arithmetic information:

- Number of mod p points $E(\mathbb{F}_p)$
- Conjecturally: number of rational points:

Conjecture of Birch and Swinnerton-Dyer (1960s) – weak form

$$L(E, 1) = 0 \text{ if and only if } \#E(\mathbb{Q}) = \infty.$$

Analytic continuation in this case: Taniyama–Shimura–Weil conjecture (proven by Wiles and Taylor (1993)).
Varieties \rightsquigarrow Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}} := \text{Gal} (\overline{\mathbb{Q}}/\mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$H^i_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) := \left(\lim_{\leftarrow r} H^i_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \right) [\ell^{-1}] .$$

Reason for finite coefficients:

$H^i_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \cong H^i_{sing}(X(\mathbb{C}), \mathbb{Z}/\ell^r \mathbb{Z})$. Need to pass to characteristic 0 in order to define L-functions $\rightsquigarrow \ell$-adic representations!
Varieties \leadsto Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) := \left(\lim_{\leftarrow r} H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \right)[\ell^{-1}].$$

Reason for finite coefficients:

$H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \cong H^i_{\text{sing}}(X(\mathbb{C}), \mathbb{Z}/\ell^r \mathbb{Z})$. Need to pass to characteristic 0 in order to define L-functions $\leadsto \ell$-adic representations! In the above examples:

- $X = \{\ast\}, i = 0 \leadsto$ trivial Galois representation.
Varieties \rightsquigarrow Galois representations

Let X be a smooth projective variety defined over \mathbb{Q} and put $G_{\mathbb{Q}} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. For any prime ℓ and integer $i \geq 0$ we have an action of $G_{\mathbb{Q}}$ on the ℓ-adic cohomology group

$$H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}) := \left(\lim_{\leftarrow r} H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \right)[\ell^{-1}].$$

Reason for finite coefficients:

$H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \cong H^i_{\text{sing}}(X(\mathbb{C}), \mathbb{Z}/\ell^r \mathbb{Z})$. Need to pass to characteristic 0 in order to define L-functions $\rightsquigarrow \ell$-adic representations!

In the above examples:

- $X = \{\ast\}, i = 0 \rightsquigarrow$ trivial Galois representation.
- $X = E, i = 1 \rightsquigarrow H^1_{\text{et}}(E_{\overline{\mathbb{Q}}}, \mathbb{Z}/\ell^r \mathbb{Z}) \cong E[\ell^r](1).$
Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\overline{\mathbb{Q}}_p} \hookrightarrow G_{\overline{\mathbb{Q}}}$.
Galois representations $\leadsto L$-functions

Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\mathbb{Q}_p} \hookrightarrow G_{\mathbb{Q}}$. The structure of local Galois groups is rather well-understood:

$$1 \rightarrow I_p \rightarrow G_{\mathbb{Q}_p} \rightarrow G_{\mathbb{F}_p} \rightarrow 1$$

where $G_{\mathbb{F}_p} \cong \hat{\mathbb{Z}}$ is topologically generated by the (arithmetic) Frobenius automorphism $\text{Frob}_p : x \mapsto x^p$.
Galois representations $\leadsto L$-functions

Fix an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ for any prime p (and also $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$). This defines an embedding $G_{\mathbb{Q}_p} \hookrightarrow G_{\mathbb{Q}}$. The structure of local Galois groups is rather well-understood:

$$1 \to I_p \to G_{\mathbb{Q}_p} \to G_{\mathbb{F}_p} \to 1$$

where $G_{\mathbb{F}_p} \cong \hat{\mathbb{Z}}$ is topologically generated by the (arithmetic) Frobenius automorphism $\text{Frob}_p : x \mapsto x^p$. Now if

$$\rho : G_{\mathbb{Q}} \to \text{GL}(V)$$

is a global Galois-representation on a finite dimensional vectorspace V over a field K of characteristic 0 (embedded into \mathbb{C}) then we defined the local polynomial at p as the characteristic polynomial

$$P_{\rho,p}(T) := \det(id - T \text{Frob}_p | V^{I_p}) \in K[T].$$
Galois representations $\rightsquigarrow L$-functions

The L-function attached to the Galois representation ρ is defined as

$$L(\rho, s) := \prod_{p \text{ prime}} \frac{1}{P_{\rho,p}(p^{-s})} \quad (\text{Re}(s) \gg 0).$$

In case of $X = \{\ast\}, i = 0$ this specializes to Riemann ζ and in case $X = E, i = 1$ to the L-function of the elliptic curve as above.
Galois representations $\leadsto L$-functions

The L-function attached to the Galois representation ρ is defined as

$$L(\rho, s) := \prod_{p \text{ prime}} \frac{1}{P_{\rho,p}(p^{-s})} \quad (\text{Re}(s) \gg 0) .$$

In case of $X = \{\ast\}$, $i = 0$ this specializes to Riemann ζ and in case $X = E$, $i = 1$ to the L-function of the elliptic curve as above.

Fundamental open questions in the theory:

- Analytic continuation and functional equation \leadsto modularity
The L-function attached to the Galois representation ρ is defined as

$$L(\rho, s) := \prod_{p \text{ prime}} \frac{1}{P_{\rho,p}(p^{-s})} \quad (\text{Re}(s) \gg 0).$$

In case of $X = \{\ast\}$, $i = 0$ this specializes to Riemann ζ and in case $X = E$, $i = 1$ to the L-function of the elliptic curve as above.

Fundamental open questions in the theory:
- Analytic continuation and functional equation \leadsto modularity
- Which Galois representations arise from geometry, ie. as a subquotient of the étale cohomology of a smooth projective variety?

The above 2 questions are closely related.
Fontaine–Mazur conjecture (1995)

An irred. \(\ell \)-adic Galois representation \(\rho : G_{\mathbb{Q}} \rightarrow \text{GL}_n(\mathbb{Q}_\ell) \) comes from geometry if and only if the following two conditions hold:

(i) \(\rho \) is unramified (i.e. \(\rho(I_p) = \{1\} \)) at all but finitely many primes \(p \).

(ii) \(\rho \) is de Rahm at the prime \(p = \ell \).
Fontaine–Mazur conjecture (1995)

An irred. ℓ-adic Galois representation $\rho : G_{\mathbb{Q}} \to \text{GL}_n(\mathbb{Q}_{\ell})$ comes from geometry if and only if the following two conditions hold:

$i)$ ρ is unramified (i.e. $\rho(I_p) = \{1\}$) at all but finitely many primes p.

$ii)$ ρ is de Rahm at the prime $p = \ell$.

The “only if” part of the above conjecture is known: $i)$ by Grothendieck (note that in the case of elliptic curves those primes ramify at which the curve has bad reduction: criterion of Néron–Ogg–Shafarevich—in particular, there are finitely many). Assertion $ii)$ (“p-adic de Rham comparison isomorphism”) was first proven by Faltings and by Tsuji and reproven recently by Beilinson (survey: Szamuely–Z) and by Scholze.
Fontaine–Mazur conjecture (1995)

An irred. \(\ell\)-adic Galois representation \(\rho: G_{\mathbb{Q}} \to \text{GL}_n(\mathbb{Q}_\ell)\) comes from geometry if and only if the following two conditions hold:

(i) \(\rho\) is unramified (ie. \(\rho(I_p) = \{1\}\)) at all but finitely many primes \(p\).

(ii) \(\rho\) is de Rahm at the prime \(p = \ell\).

The “only if” part of the above conjecture is known: (i) by Grothendieck (note that in the case of elliptic curves those primes ramify at which the curve has bad reduction: criterion of Néron–Ogg–Shafarevich—in particular, there are finitely many).

Assertion (ii) (“\(p\)-adic de Rham comparison isomorphism”) was first proven by Faltings and by Tsuji and reproven recently by Beilinson (survey: Szamuely–Z) and by Scholze. We need to better understand the case \(\ell = p\)!
Let \(X \) be a smooth projective variety over \(\mathbb{C} \). Classical Poincaré lemma

\[
H^n_{\text{sing}}(X(\mathbb{C}), \mathbb{C}) = H^n_{\text{dR}}(X^{an}, \mathbb{C})
\]

where the right hand side is computed by the Hodge–to–de Rham spectral sequence

\[
E_1^{p,q} := H^q(X^{an}, \Omega^p_{X^{an}}) \Rightarrow H^{p+q}_{\text{dR}}(X^{an}, \mathbb{C})
\]

where \(\Omega^p_{X^{an}} \) stands for the sheaf of holomorphic \(p \)-forms on the analytic manifold \(X^{an} \).
Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \(\Rightarrow\)

$$H^n_{\text{sing}}(X(\mathbb{C}), \mathbb{C}) = H^n_{dR}(X^{\text{an}}, \mathbb{C})$$

where the right hand side is computed by the Hodge–to–de Rham spectral sequence

$$E_1^{p,q} := H^q(X^{\text{an}}, \Omega^p_{X^{\text{an}}}) \Rightarrow H^{p+q}_{dR}(X^{\text{an}}, \mathbb{C})$$

where $\Omega^p_{X^{\text{an}}}$ stands for the sheaf of holomorphic p-forms on the analytic manifold X^{an}.

Can we generalize this to other ground fields K?
Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma \Rightarrow

$$H^n_{\text{sing}}(X(\mathbb{C}), \mathbb{C}) = H^n_{dR}(X^{an}, \mathbb{C})$$

where the right hand side is computed by the Hodge–to–de Rham spectral sequence

$$E_1^{p,q} := H^q(X^{an}, \Omega^p_{X^{an}}) \Rightarrow H^{p+q}_{dR}(X^{an}, \mathbb{C})$$

where $\Omega^p_{X^{an}}$ stands for the sheaf of holomorphic p-forms on the analytic manifold X^{an}.

Can we generalize this to other ground fields K?

- Étale cohomology can be regarded as the analogue of singular cohomology: they agree if $K = \mathbb{C}$ and the coefficients are finite (or, after taking the limit, p-adic).
Classical comparison isomorphism

Let X be a smooth projective variety over \mathbb{C}. Classical Poincaré lemma

$$H^n_{\text{sing}}(X(\mathbb{C}), \mathbb{C}) = H^n_{dR}(X^{an}, \mathbb{C})$$

where the right hand side is computed by the Hodge–to–de Rham spectral sequence

$$E_1^{p,q} := H^q(X^{an}, \Omega^p_{X^{an}}) \Rightarrow H^{p+q}_{dR}(X^{an}, \mathbb{C})$$

where $\Omega^p_{X^{an}}$ stands for the sheaf of holomorphic p-forms on the analytic manifold X^{an}.

Can we generalize this to other ground fields K?

- Étale cohomology can be regarded as the analogue of singular cohomology: they agree if $K = \mathbb{C}$ and the coefficients are finite (or, after taking the limit, p-adic).
- In case of algebraic de Rham cohomology coefficients lie in K!
So we take $K = \mathbb{Q}_p$. Associated to the algebraic de Rham complex

$$\Omega^\bullet_X : \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \to \cdots$$

of sheaves (in the Zariski topology) of Kähler-differentials there is a Hodge–to–de Rham spectral sequence

$$E_{1}^{p,q} := H^q(X, \Omega^p_X) \Rightarrow H^{p+q}_{dR}(X/K)$$
So we take $K = \mathbb{Q}_p$. Associated to the algebraic de Rham complex

$$\Omega^\bullet_X : \mathcal{O}_X \xrightarrow{d} \Omega^1_X \xrightarrow{d} \Omega^2_X \to \cdots$$

of sheaves (in the Zariski topology) of Kähler-differentials there is a Hodge–to–de Rham spectral sequence

$$E_1^{p,q} := H^q(X, \Omega^p_X) \Rightarrow H^{p+q}_{dR}(X/K)$$

For a p-adic Poincaré lemma to hold, one has to pass to a big field \mathcal{B}_{dR} (which is a discretely valued field with residue field $\mathbb{C}_p = \hat{\mathbb{Q}}_p$ admitting an action of $G_{\mathbb{Q}_p}$) so one has an isomorphism (Faltings)

$$H^i_{dR}(X/\mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathcal{B}_{dR} \xrightarrow{\sim} H^i_{et}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathcal{B}_{dR}$$

compatible with the filtration and the Galois action on both sides.
Taking $G_{\mathbb{Q}_p}$-invariants of the isomorphism above one obtains

$$H_{dR}^i(X/\mathbb{Q}_p) \cong \left(H^i_{\text{et}}(\overline{X}_{\mathbb{Q}_p}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{dR}\right)^{G_{\mathbb{Q}_p}}$$

using the fact $B_{dR}^{G_{\mathbb{Q}_p}} = \mathbb{Q}_p$.
Taking G_{Q_p}-invariants of the isomorphism above one obtains

$$H^i_{dR}(X/Q_p) \cong \left(H^i_{et}(X_{\overline{Q_p}}, Q_p) \otimes_{Q_p} B_{dR} \right)^{G_{Q_p}}$$

using the fact $B_{dR}^{G_{Q_p}} = Q_p$. By GAGA the two sides have the same dimension therefore we define a local p-adic Galois-representation V to be de Rham if we have $\dim_{Q_p} D_{dR}(V) = \dim_{Q_p} V$ where

$$D_{dR}(V) := \left(V \otimes_{Q_p} B_{dR} \right)^{G_{Q_p}}.$$
Taking $G_{\mathbb{Q}_p}$-invariants of the isomorphism above one obtains

$$H^i_{dR}(X/\mathbb{Q}_p) \cong \left(H^i_{et}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{B}_{dR} \right)^{G_{\mathbb{Q}_p}}$$

using the fact $\mathbb{B}_{dR}^{G_{\mathbb{Q}_p}} = \mathbb{Q}_p$. By GAGA the two sides have the same dimension therefore we define a local p-adic Galois-representation V to be de Rham if we have $\dim_{\mathbb{Q}_p} D_{dR}(V) = \dim_{\mathbb{Q}_p} V$ where

$$D_{dR}(V) := (V \otimes_{\mathbb{Q}_p} \mathbb{B}_{dR})^{G_{\mathbb{Q}_p}}.$$

Problem: We cannot recover V from $D_{dR}(V)$! (even if V is de Rham)
Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_E := \text{Gal}(\overline{E}/E)$ over \mathbb{F}_p. By Hilbert’s Theorem 90 we can trivialize V over \overline{E}, i.e.

$$ \overline{E} \otimes_{\mathbb{F}_p} V \cong \overline{E}^{\dim_{\mathbb{F}_p} V} \cong \overline{E} \otimes_E \left(\overline{E} \otimes_{\mathbb{F}_p} V \right)^{G_E} $$

as G_E-modules. In particular, $D(V) := \left(\overline{E} \otimes_{\mathbb{F}_p} V \right)^{G_E}$ has dimension $\dim_{\mathbb{F}_p} V$ over E.
Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_E := \text{Gal}(\overline{E}/E)$ over \mathbb{F}_p. By Hilbert’s Theorem 90 we can trivialize V over \overline{E}, ie.

$$\overline{E} \otimes_{\mathbb{F}_p} V \cong \overline{E}^{\dim_{\mathbb{F}_p} V} \cong \overline{E} \otimes_{E} (\overline{E} \otimes_{\mathbb{F}_p} V)^{G_E}$$

as G_E-modules. In particular, $D(V) := (\overline{E} \otimes_{\mathbb{F}_p} V)^{G_E}$ has dimension $\dim_{\mathbb{F}_p} V$ over E.

New feature: We can recover V from $D(V)$!
Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_E := \text{Gal}(\overline{E}/E)$ over \mathbb{F}_p. By Hilbert’s Theorem 90 we can trivialize V over \overline{E}, i.e.

$$\overline{E} \otimes_{\mathbb{F}_p} V \cong \overline{E}^{\dim_{\mathbb{F}_p} V} \cong \overline{E} \otimes_E (\overline{E} \otimes_{\mathbb{F}_p} V)^{G_E}$$

as G_E-modules. In particular, $D(V) := (\overline{E} \otimes_{\mathbb{F}_p} V)^{G_E}$ has dimension $\dim_{\mathbb{F}_p} V$ over E.

New feature: We can recover V from $D(V)$!

Key extra structure: in characteristic p the Frobenius $\text{Frob}_p : \overline{E} \to \overline{E}$ has fixed field \mathbb{F}_p.
Galois representation in characteristic p

Let E be a perfect field of characteristic p and V be a finite dimensional representation of $G_E := \text{Gal}(\bar{E}/E)$ over \mathbb{F}_p. By Hilbert’s Theorem 90 we can trivialize V over \bar{E}, ie.

$$\bar{E} \otimes_{\mathbb{F}_p} V \cong \bar{E}^{\dim_{\mathbb{F}_p} V} \cong \bar{E} \otimes_{E} (\bar{E} \otimes_{\mathbb{F}_p} V)^{G_E}$$

as G_E-modules. In particular, $D(V) := (\bar{E} \otimes_{\mathbb{F}_p} V)^{G_E}$ has dimension $\dim_{\mathbb{F}_p} V$ over E.

New feature: We can recover V from $D(V)$!

Key extra structure: in characteristic p the Frobenius $\text{Frob}_p : \bar{E} \to \bar{E}$ has fixed field \mathbb{F}_p.

Put $\varphi := \text{Frob}_p \otimes id_V : \bar{E} \otimes_{\mathbb{F}_p} V \to \bar{E} \otimes_{\mathbb{F}_p} V$ so we have $V = (\bar{E} \otimes_{E} D(V))^{\varphi=id}$.
How to pass from char 0 to char p?

Tilting equivalence of Scholze!
How to pass from char 0 to char p?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: “norm fields” (1979)
How to pass from char 0 to char p?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: “norm fields” (1979)
- Scholze (\sim2012) extended the notion and made it more geometric

Definition

Let K be a field that is complete with respect to a nonarchimedean *nondiscrete* valuation $| \cdot | : K \to \mathbb{R}_{\geq 0}$. We say that K is **perfectoid** if the p-Frobenius map $\text{Frob}_p : \mathcal{O}_K/(p) \to \mathcal{O}_K/(p)$ is surjective.
How to pass from char 0 to char p?

Tilting equivalence of Scholze!

- Has its origins in the work of Fontaine and Wintenberger: “norm fields” (1979)
- Scholze (~2012) extended the notion and made it more geometric

Definition

Let K be a field that is complete with respect to a nonarchimedean *nondiscrete* valuation $|\cdot|: K \to \mathbb{R}_{\geq 0}$. We say that K is **perfectoid** if the p-Frobenius map $\text{Frob}_p: \mathcal{O}_K/(p) \to \mathcal{O}_K/(p)$ is surjective.

Examples: \mathbb{C}_p, $\hat{\mathbb{Q}}_p(\mu_{p^\infty})$, $\hat{\mathbb{Q}}_p(p^{1/p^\infty})$, $\mathbb{F}_p((\mathbb{T}^{1/p^\infty}))$ but not \mathbb{Q}_p (valuation is discrete!).
Tilting equivalence

Let K be a perfectoid field. The perfectoid field $K^b := \text{Frac}(\mathcal{O}_{K^b})$ of characteristic p is called the *tilt* of K where

$$
\mathcal{O}_{K^b} := \lim_{\xleftarrow{\text{Frob}_p}} \mathcal{O}_K/(p).
$$
Let K be a perfectoid field. The perfectoid field $K^\flat := \text{Frac}(\mathcal{O}_{K^\flat})$ of characteristic p is called the *tilt* of K where

$$\mathcal{O}_{K^\flat} := \varprojlim \mathcal{O}_K/(p).$$

Theorem (Tilting equivalence of Scholze)

Let K be a perfectoid field. Then the functor $\flat : L \mapsto L^\flat$ gives an equivalence of categories between perfectoid extensions of K and perfectoid extensions of K^\flat. Moreover, if L/K is finite separable then L is perfectoid (baby case of almost purity).
Tilting equivalence

Let K be a perfectoid field. The perfectoid field $K^b := \text{Frac}(\mathcal{O}_{K^b})$ of characteristic p is called the \textit{tilt} of K where

$$\mathcal{O}_{K^b} := \lim_{\overset{\leftarrow}{\text{Frob}_p}} \mathcal{O}_K/(p).$$

\textbf{Theorem (Tilting equivalence of Scholze)}

Let K be a perfectoid field. Then the functor $\♭ : L \mapsto L^♭$ gives an equivalence of categories between perfectoid extensions of K and perfectoid extensions of $K^♭$. Moreover, if L/K is finite separable then L is perfectoid (baby case of almost purity).

\textbf{Corollary}

We have $G_K \cong G_{K^♭}$ and if K is the completion of a Galois extension of \mathbb{Q}_p then we have $\text{Gal}(K/\mathbb{Q}_p) \hookrightarrow \text{Aut}(K^♭)$.
Let K be a perfectoid field (of char 0)

$\{\text{mod } p \text{ reps of } G_K\} \leftrightarrow \{\text{mod } p \text{ reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-modules }/K^b\}$
Let K be a perfectoid field (of char 0)

\[\{ \text{mod } p \text{ reps of } G_K \} \leftrightarrow \{ \text{mod } p \text{ reps of } G_{K^b} \} \leftrightarrow \{ \varphi\text{-modules }/K^b \} \]

By taking Witt vectors and inverting p we also have

\[\{ p\text{-adic reps of } G_K \} \leftrightarrow \{ p\text{-adic reps of } G_{K^b} \} \leftrightarrow \{ \varphi\text{-mods }/W(K^b)[p^{-1}] \} \]
Let K be a perfectoid field (of char 0)

\[
\{\text{mod } p \text{ reps of } G_K\} \leftrightarrow \{\text{mod } p \text{ reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-modules }/K^b\}
\]

By taking Witt vectors and inverting p we also have

\[
\{p\text{-adic reps of } G_K\} \leftrightarrow \{p\text{-adic reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-mods }/W(K^b)[p^{-1}]\}
\]

What about reps of $G_{\mathbb{Q}_p}$?
Let K be a perfectoid field (of char 0)

\[
\{\text{mod } p \text{ reps of } G_K\} \leftrightarrow \{\text{mod } p \text{ reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-modules }/K^b\}
\]

By taking Witt vectors and inverting p we also have

\[
\{\text{p-adic reps of } G_K\} \leftrightarrow \{\text{p-adic reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-mods }/W(K^b)[p^{-1}]\}
\]

What about reps of $G_{\mathbb{Q}_p}$? Pick a Galois extension K_0/\mathbb{Q}_p such that $K := \widehat{K_0}$ is perfectoid. E.g. take $K_0 := \mathbb{Q}_p(\mu_{p^\infty})$ and $\Gamma := \text{Gal}(K_0/\mathbb{Q}_p)$ whence

\[
\{\text{p-adic reps of } G_{\mathbb{Q}_p}\} \leftrightarrow \{\varphi, \Gamma\text{-modules }/W(K^b)[p^{-1}]\}
\]
Let K be a perfectoid field (of char 0)

\[
\{\text{mod } p \text{ reps of } G_K\} \leftrightarrow \{\text{mod } p \text{ reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-modules } /K^b\}
\]

By taking Witt vectors and inverting p we also have

\[
\{p\text{-adic reps of } G_K\} \leftrightarrow \{p\text{-adic reps of } G_{K^b}\} \leftrightarrow \{\varphi\text{-mods } /W(K^b)[p^{-1}]\}
\]

What about reps of $G_{\mathbb{Q}_p}$? Pick a Galois extension K_0/\mathbb{Q}_p such that $K := \widehat{K_0}$ is perfectoid. E.g. take $K_0 := \mathbb{Q}_p(\mu_{p^\infty})$ and $\Gamma := \text{Gal}(K_0/\mathbb{Q}_p)$ whence

\[
\{p\text{-adic reps of } G_{\mathbb{Q}_p}\} \leftrightarrow \{\varphi, \Gamma\text{-modules } /W(K^b)[p^{-1}]\}
\]

New feature (Scholze): There is a geometric object $\text{Spd}(\mathbb{Q}_p)$ in characteristic p with étale fundamental group $G_{\mathbb{Q}_p}$: formal orbit space of Γ-action on $\text{Spa}(\mathbb{Q}_p(\mu_{p^\infty})^b)$ in the category of diamonds.
Imperfect \((\varphi, \Gamma)\)-modules

We have \(\overline{\mathbb{Q}_p(\mu_{p\infty})}^b = \overline{\mathbb{F}_p((T^{1/p\infty})^b)}\)—one could, for most purposes, work with \((\varphi, \Gamma)\)-modules over these. But e.g. for the \(p\)-adic Langlands programme one needs *imperfect* ground fields.
Imperfect \((\varphi, \Gamma)\)-modules

We have \(\widehat{\mathbb{Q}_p}(\mu_{p^\infty})^b = \mathbb{F}_p((\mathcal{T}^{1/p^\infty}))\)—one could, for most purposes, work with \((\varphi, \Gamma)\)-modules over these. But e.g. for the \(p\)-adic Langlands programme one needs *imperfect* ground fields.

Observation: we have \(G_{\mathbb{F}_p((\mathcal{T})')} \cong G_{\mathbb{F}_p((\mathcal{T}^{1/p^\infty})')} \mapsto \{\text{mod } p \text{ reps of } G_{\mathbb{Q}_p}\} \leftrightarrow \{((\varphi, \Gamma)\text{-modules} / \mathbb{F}_p((\mathcal{T}))\} \)}}
Imperfect \((\varphi, \Gamma)\)-modules

We have \(\widehat{\mathbb{Q}_p(\mu_{p^{\infty}})}^b = \mathbb{F}_p((\overline{T^{1/p^{\infty}}}))\)—one could, for most purposes, work with \((\varphi, \Gamma)\)-modules over these. But e.g. for the \(p\)-adic Langlands programme one needs imperfect ground fields.

Observation: we have
\[
G_{\mathbb{F}_p((T))} \cong G_{\mathbb{F}_p((\overline{T^{1/p^{\infty}}})^b)} \mapsto
\]
\[
\{ \text{mod } p \text{ reps of } G_{\mathbb{Q}_p} \} \leftrightarrow \{(\varphi, \Gamma)\text{-modules } / \mathbb{F}_p((T))\}
\]
and
\[
\{ \text{p-adic reps of } G_{\mathbb{Q}_p} \} \leftrightarrow \{ \text{étale } (\varphi, \Gamma)\text{-modules } / \mathcal{E} \}
\]
where we put \(\mathcal{E} := \mathcal{O}_\mathcal{E}[p^{-1}]\) and \(\mathcal{O}_\mathcal{E} := \lim_n \mathbb{Z}/(p^n)((T))\). Étale means: \(\text{id} \otimes \varphi: \mathcal{E} \otimes_{\mathcal{E}, \varphi} D \to D\) is bijective (note: \(\text{Frob}_p: \mathbb{F}_p((T)) \to \mathbb{F}_p((T))\) is no longer bijective!) This is Fontaine’s equivalence of categories (1990).
Let V be a p-adic representation of $G_{\mathbb{Q}_p}$ and put $D(V)$ for the corresponding (φ, Γ)-module over E. In order to recover $D_{dR}(V) = (\mathcal{B}_{dR} \otimes_{\mathbb{Q}_p} V)^{G_{\mathbb{Q}_p}}$ from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere.
Let V be a p-adic representation of $G_{\mathbb{Q}_p}$ and put $D(V)$ for the corresponding (φ, Γ)-module over E. In order to recover \(D_{dR}(V) = (B_{dR} \otimes_{\mathbb{Q}_p} V)^{G_{\mathbb{Q}_p}} \) from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere. Put

\[
\mathcal{R}^{(r,1)} := \{ f(T) = \sum_{i=-\infty}^{\infty} a_i T^i \mid a_i \in \mathbb{Q}_p, \text{ f converges if } r < |T|_p < 1 \}
\]

\[
\mathcal{R} := \bigcup_{0<r<1} \mathcal{R}^{(r,1)} \quad \mathcal{E}^\dagger := \{ f \in \mathcal{R} \mid \limsup_{|T|_p \to 1} |f(T)|_p < \infty \}
\]

Note: \mathcal{E}^\dagger embeds into \mathcal{E} (but \mathcal{R} does not).
Let V be a p-adic representation of $G_{\mathbb{Q}_p}$ and put $D(V)$ for the corresponding (φ, Γ)-module over E. In order to recover $D_{dR}(V) = (\mathcal{B}_{dR} \otimes_{\mathbb{Q}_p} V)^{G_{\mathbb{Q}_p}}$ from $D(V)$ one first has to pass to coefficient rings converging p-adically at least somewhere. Put

$$R^{(r,1)} := \left\{ f(T) = \sum_{i=-\infty}^{\infty} a_i T^i \mid a_i \in \mathbb{Q}_p, \text{ } f \text{ converges if } r < |T|_p < 1 \right\}$$

$$R := \bigcup_{0 < r < 1} R^{(r,1)} \quad \quad \mathcal{E}^\dagger := \left\{ f \in R \mid \limsup_{|T|_p \to 1} |f(T)|_p < \infty \right\}$$

Note: \mathcal{E}^\dagger embeds into \mathcal{E} (but R does not).

Theorem (Cherbonnier–Colmez: overconergence)

$D(V)$ descends to an étale (φ, Γ)-module $D^\dagger(V)$ over \mathcal{E}^\dagger.
Theorem (Berger)

Put \(D^{\text{rig}}(V) := \mathcal{R} \otimes_{\mathcal{E}^\dagger} D^\dagger(V) \) and
\[
t := \log(1 + T) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{T^k}{k} \in \mathcal{R}.
\]
Then there exists a \(p \)-adic differential equation (\(\mathbb{Q}_p(\mu_p)\)[[t]]-module with \(\Gamma \)-action) \(D^{\text{dif}}(V) \) associated to \(D^{\text{rig}}(V) \) such that we have
\[
D_{dR}(V) = D^{\text{dif}}(V)^\Gamma.
\]
Theorem (Berger)

Put $D^{\text{rig}}(V) := \mathcal{R} \otimes \mathcal{E} \uparrow D^\uparrow(V)$ and
$t := \log(1 + T) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{T^k}{k} \in \mathcal{R}$. Then there exists a p-adic differential equation ($\mathbb{Q}_p(\mu_{p^\infty})[[t]]$-module with Γ-action) $D^{\text{dif}}(V)$ associated to $D^{\text{rig}}(V)$ such that we have

$$D_{dR}(V) = D^{\text{dif}}(V)^\Gamma.$$

Most applications use: for $? = \text{rig}, \uparrow, \text{or empty}$ Herr’s complex below computes Galois cohomology:

$$0 \rightarrow D?(V)^{(\varphi - \text{id}, \gamma - \text{id})} \rightarrow D?(V) \oplus D?(V)^{(\text{id} - \gamma, \varphi - \text{id})} \rightarrow D?(V) \rightarrow 0.$$
Motivation: generalize Colmez’ functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\text{GL}_2(\mathbb{Q}_p)$:

$$1 + T \leftrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \varphi \leftrightarrow \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \quad \Gamma \leftrightarrow \begin{pmatrix} \mathbb{Z}_p^\times & 0 \\ 0 & 1 \end{pmatrix}$$
Motivation: generalize Colmez’ functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\text{GL}_2(\mathbb{Q}_p)$:

$$1 + T \leftrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \varphi \leftrightarrow \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \quad \Gamma \leftrightarrow \begin{pmatrix} \mathbb{Z}_p^\times & 0 \\ 0 & 1 \end{pmatrix}$$

\sim functor from smooth (ie. stabilizers are open) mod p^n representations \mapsto mod p^n étale (φ, Γ)-modules \mapsto mod p^n local Galois representations.
Motivation: generalize Colmez’ functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $GL_2(\mathbb{Q}_p)$:

$$1 + T \leftrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \varphi \leftrightarrow \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \quad \Gamma \leftrightarrow \begin{pmatrix} \mathbb{Z}_p^\times & 0 \\ 0 & 1 \end{pmatrix}$$

\mapsto functor from smooth (ie. stabilizers are open) mod p^n representations \mapsto mod p^n étale (φ, Γ)-modules $\xrightarrow{\text{Fontaine}}$ mod p^n local Galois representations.

If there is a generalization to groups of higher rank (e.g. $GL_n(\mathbb{Q}_p)$ with $n > 2$) it is natural to expect that “multivariable” objects come into picture.
Motivation: generalize Colmez’ functors

Main observation of Colmez when constructing a p-adic Langlands correspondence for $\GL_2(\mathbb{Q}_p)$:

$$1 + T \leftrightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \varphi \leftrightarrow \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \quad \Gamma \leftrightarrow \begin{pmatrix} \mathbb{Z}_p^\times & 0 \\ 0 & 1 \end{pmatrix}$$

$\sim \Rightarrow$ functor from smooth (ie. stabilizers are open) mod p^n representations \mapsto mod p^n étale (φ, Γ)-modules $\overset{\text{Fontaine}}{\mapsto}$ mod p^n local Galois representations.

If there is a generalization to groups of higher rank (e.g. $\GL_n(\mathbb{Q}_p)$ with $n > 2$) it is natural to expect that “multivariable” objects come into picture. Hint (Breuil–Herzig–Schraen): A generalized Colmez functor applied to the automorphic $\GL_n(\mathbb{Q}_p)$-representation attached to a mod p (global) Galois representation ρ (the corresponding Hecke-isotypical component in the cohomology of a Shimura-variety) should not give ρ back but $\bigotimes_{i=1}^n \wedge^i \rho$.
Theorem (Z, Carter–Kedlaya–Z)

Let \(\Delta \) be a finite set and put \(G_{\mathbb{Q}_p,\Delta} := \prod_{\alpha \in \Delta} G_{\mathbb{Q}_p} \). There is an equivalence of categories

\[
\{\text{\(p \)-adic reps of } G_{\mathbb{Q}_p,\Delta}\} \leftrightarrow \{\text{étale } (\varphi_\Delta, \Gamma_\Delta)\text{-modules over } \mathcal{E}_\Delta\}
\]

where \(\varphi_\Delta = (\varphi_\alpha \mid \alpha \in \Delta) \) (one Frobenius lift for each variable), \(\Gamma_\Delta := \prod_{\alpha \in \Delta} \Gamma \), \(\mathcal{E}_\Delta := \mathcal{O}_{\mathcal{E}_\Delta}[p^{-1}] \) and
\[
\mathcal{O}_{\mathcal{E}_\Delta} := \varprojlim_n \mathbb{Z}/(p^n)[[T_\alpha \mid \alpha \in \Delta]][\prod_{\alpha \in \Delta} T_\alpha^{-1}].
\]
Theorem (Z, Carter–Kedlaya–Z)

Let Δ be a finite set and put $G_{\mathbb{Q}_p,\Delta} := \prod_{\alpha \in \Delta} G_{\mathbb{Q}_p}$. There is an equivalence of categories

$$\{\text{p-adic reps of } G_{\mathbb{Q}_p,\Delta}\} \leftrightarrow \{\text{étale } (\varphi_\Delta, \Gamma_\Delta)\text{-modules over } \mathcal{E}_\Delta\}$$

where $\varphi_\Delta = (\varphi_\alpha \mid \alpha \in \Delta)$ (one Frobenius lift for each variable), $\Gamma_\Delta := \prod_{\alpha \in \Delta} \Gamma$, $\mathcal{E}_\Delta := \mathcal{O}_{\mathcal{E}_\Delta}[p^{-1}]$ and $\mathcal{O}_{\mathcal{E}_\Delta} := \varprojlim_n \mathbb{Z}/(p^n)[T_\alpha \mid \alpha \in \Delta][\prod_{\alpha \in \Delta} T_\alpha^{-1}]$.

Theorem (Z)

There is a right exact functor compatible with parabolic induction and tensor products from the category of smooth mod p^n representations of $GL_n(\mathbb{Q}_p)$ to the category of mod p^n representations of $G_{\mathbb{Q}_p}^{n-1} \times \mathbb{Q}_p^\times$. In case of $n = 2$ this agrees with Colmez’ functor realizing p-adic Langlands for $GL_2(\mathbb{Q}_p)$.

Methods of proof (Carter–Kedlaya–Z)

Recall: $\pi_1(Spd(\mathbb{Q}_p)) \cong G_{\mathbb{Q}_p}$.
Methods of proof (Carter–Kedlaya–Z)

Recall: $\pi_1(\text{Spd}(\mathbb{Q}_p)) \cong G_{\mathbb{Q}_p}$. Analogue of Künneth Theorem $\pi_1(X_1 \times X_2) \cong \pi_1(X_1) \times \pi_1(X_2)$ for pointed topological spaces in characteristic p geometry?

$\text{Spec } k \times \text{Spec } k = \text{Spec } k$ but $\text{diag}: G_k \to G_k \times G_k$ is not an isomorphism...
Methods of proof (Carter–Kedlaya–Z)

Recall: \(\pi_1(\text{Spd}(\mathbb{Q}_p)) \cong G_{\mathbb{Q}_p} \). Analogue of Küneth Theorem \(\pi_1(X_1 \times X_2) \cong \pi_1(X_1) \times \pi_1(X_2) \) for pointed topological spaces in characteristic \(p \) geometry?

Spec \(k \times \text{Spec } k = \text{Spec } k \) but \(\text{diag}: G_k \to G_k \times G_k \) is not an isomorphism...

Let \(X_1, \ldots, X_n \) be connected schemes of finite type over \(\mathbb{F}_p \) and put \(X := X_1 \times \cdots \times X_n \). Let \(\varphi_i = 1 \times \cdots \times \varphi_{X_i} \times \cdots \times 1: X \to X \) be the \(i \)th partial Frobenius and denote by \(\text{F} \text{Et}(X/\Phi) \) the category of finite étale maps \(Y \to X \) equipped with commuting isomorphisms \(\beta_i: Y \to \varphi_i^* Y \) such that the “composite” \(\beta_n \circ \cdots \circ \beta_1 \) is the relative Frobenius \(\varphi_{Y/X} \).
Methods of proof (Carter–Kedlaya–Z)

Recall: $\pi_1(Spd(\mathbb{Q}_p)) \cong G_{\mathbb{Q}_p}$. Analogue of Künneth Theorem

$\pi_1(X_1 \times X_2) \cong \pi_1(X_1) \times \pi_1(X_2)$ for pointed topological spaces in characteristic p geometry?

Spec $k \times$ Spec $k = \text{Spec } k$ but diag: $G_k \to G_k \times G_k$ is not an isomorphism...

Let X_1, \ldots, X_n be connected schemes of finite type \mathbb{F}_p and put $X := X_1 \times \cdots \times X_n$. Let $\varphi_i = 1 \times \cdots \times \varphi_{X_i} \times \cdots \times 1: X \to X$ be the ith partial Frobenius and denote by $\text{FEt}(X/\Phi)$ the category of finite étale maps $Y \to X$ equipped with commuting isomorphisms $\beta_i: Y \to \varphi_i^*Y$ such that the “composite” $\beta_n \circ \cdots \circ \beta_1$ is the relative Frobenius $\varphi_{Y/X}$. Then we have

Drinfeld’s lemma for schemes

$\pi_1(X/\Phi) \cong \pi_1(X_1) \times \cdots \times \pi_1(X_n)$.
Methods of proof (Carter–Kedlaya–Z) cont’d

Analogue of Drinfeld’s Lemma holds for connected, quasi-compact, quasi-separated diamonds X_i (due to Scholze and Kedlaya).
Methods of proof (Carter–Kedlaya–Z) cont’d

Analogue of Drinfeld’s Lemma holds for connected, quasi-compact, quasi-separated diamonds X_i (due to Scholze and Kedlaya).

Technical problem: $\text{Spd}(\mathbb{Q}_p)^n = (\text{Spa}(\mathbb{Q}_p(\mu_{p^\infty}))^b)^n / \Gamma^n$, but $(\text{Spa}(\mathbb{Q}_p(\mu_{p^\infty}))^b)^n$ is not an “affine diamond”, i.e. it is not the diamond spectrum of our (perfect) coefficient ring $R := R^+[(T_1 \cdots T_n)^{-1}]$ where

$$R^+ := \lim \left< \left(\mathbb{F}_p[[T_1^{p^{-\infty}}]] \otimes_{\mathbb{F}_p} \cdots \otimes_{\mathbb{F}_p} \mathbb{F}_p[[T_n^{p^{-\infty}}]] \right)/\langle T_1, \ldots, T_n \rangle \right>_r$$

but the rational subspace defined by

$$\{|T_1| < 1, \ldots, |T_n| < 1\}.$$
Methods of proof (Carter–Kedlaya–Z) cont’d

Analogue of Drinfeld’s Lemma holds for connected, quasi-compact, quasi-separated diamonds X_i (due to Scholze and Kedlaya).

Technical problem: $\text{Spd}(\mathbb{Q}_p)^n = (\text{Spa}(\mathbb{Q}_p(\mu_{p\infty}))^b)^n/\Gamma^n$, but $(\text{Spa}(\mathbb{Q}_p(\mu_{p\infty}))^b)^n$ is not an “affine diamond”, ie. it is not the diamond spectrum of our (perfect) coefficient ring $R := R^+[(T_1 \cdots T_n)^{-1}]$ where

$$R^+ := \varprojlim_r(\mathbb{F}_p[[T_1^{p^{-\infty}}]] \otimes_{\mathbb{F}_p} \cdots \otimes_{\mathbb{F}_p} \mathbb{F}_p[[T_n^{p^{-\infty}}]])/(T_1, \ldots, T_n)^r$$

but the rational subspace defined by

$$\{ |T_1| < 1, \ldots, |T_n| < 1 \}.$$

Need: “Perfectoid Riemann Extension Theorem” + “imperfection”.
Methods of proof (Carter–Kedlaya–Z) cont’d

Analogue of Drinfeld’s Lemma holds for connected, quasi-compact, quasi-separated diamonds X_i (due to Scholze and Kedlaya).

Technical problem: $\text{Spd}(\mathbb{Q}_p)^n = (\text{Spa}(\mathbb{Q}_p(\mu_{p^\infty}))^b)^n / \Gamma^n$, but $(\text{Spa}(\mathbb{Q}_p(\mu_{p^\infty}))^b)^n$ is not an “affine diamond”, i.e. it is not the diamond spectrum of our (perfect) coefficient ring $R := R^+[(T_1 \cdots T_n)^{-1}]$ where

$$R^+ := \varprojlim_r \left(\mathbb{F}_p[[T_1^{p^{-\infty}}]] \otimes_{\mathbb{F}_p} \cdots \otimes_{\mathbb{F}_p} \mathbb{F}_p[[T_n^{p^{-\infty}}]] \right) / (T_1, \ldots, T_n)^r$$

but the rational subspace defined by

$$\left\{ |T_1| < 1, \ldots, |T_n| < 1 \right\}.$$

Need: “Perfectoid Riemann Extension Theorem” + “imperfection”. Holds also for possibly distinct finite extensions K_1, \ldots, K_n of \mathbb{Q}_p.
Further results and possible future directions

- (Pal–Z) Generalization of Herr’s complex still computes group cohomology of $G_{\mathbb{Q}_p,\Delta}$.
Further results and possible future directions

- (Pal–Z) Generalization of Herr’s complex still computes group cohomology of $G_{\mathbb{Q}_p,\Delta}$.
- (Pal–Z, Carter–Kedlaya–Z) Multivariable $(\varphi_\Delta, \Gamma_\Delta)$-modules are overconvergent.
Further results and possible future directions

- (Pal–Z) Generalization of Herr’s complex still computes group cohomology of $G_{\mathbb{Q}_p, \Delta}$.
- (Pal–Z, Carter–Kedlaya–Z) Multivariable $(\varphi_{\Delta}, \Gamma_{\Delta})$-modules are overconvergent.

Future directions:

- Pass to the Robba ring and construct Bloch–Kato exponential maps and Perrin-Riou’s big exponential maps in this product situation \rightsquigarrow prove classical ε-isomorphisms (etc.$?$) for p-adic representations of the form $V_1 \otimes_{\mathbb{Q}_p} V_2$ if it is known for both V_1 and V_2.
Further results and possible future directions

- (Pal–Z) Generalization of Herr’s complex still computes group cohomology of $G_{Q_p,\Delta}$.
- (Pal–Z, Carter–Kedlaya–Z) Multivariable $(\varphi_\Delta, \Gamma_\Delta)$-modules are overconvergent.

Future directions:
- Pass to the Robba ring and construct Bloch–Kato exponential maps and Perrin-Riou’s big exponential maps in this product situation \rightsquigarrow prove classical ε-isomorphisms (etc.? for p-adic representations of the form $V_1 \otimes_{Q_p} V_2$ if it is known for both V_1 and V_2.
- Relate these notions to Berger’s Lubin–Tate multivariable (φ, Γ)-modules \rightsquigarrow better structural properties of the latter
Thanks for your attention!