A note on central torsion Iwasawa-modules

GERGELY ZÁBRÁDI

28th February 2013

1 Notation and preliminaries

For the Galois group \(\text{Gal}(L/k) \) of a Galois extension \(L \) of the number field \(k \) and a prime \(v \) of \(k \) we write \(\text{Gal}(L/k)_v \) for the decomposition subgroup of \(v \). Let \(\mathcal{G} \) be any \(p \)-adic Lie group without elements of order \(p \) and with a closed normal subgroup \(\mathcal{H} \triangleleft \mathcal{G} \) such that \(\Gamma := \mathcal{G}/\mathcal{H} \cong \mathbb{Z}_p \). We are going to need the special case when \(\mathcal{G} \) is a finite index subgroup of \(\text{Gal}(\mathbb{Q}(E[p^\infty])/\mathbb{Q}) \) and also in the case when \(\mathcal{G} \cong \mathbb{Z}_p \). The former embeds into \(\text{GL}_2(\mathbb{Z}_p) \) once we choose a \(\mathbb{Z}_p \)-basis of \(T_p(E) \). We denote by \(\Lambda(\mathcal{G}) \) the Iwasawa \(\Lambda(p) \)-algebra of \(\mathcal{G} \) and by \(\Omega(\mathcal{G}) \) its \(\mathbb{F}_p \)-version.

Let \(S \) be the set of all \(f \) in \(\Lambda(\mathcal{G}) \) such that \(\Lambda(\mathcal{G})/\Lambda(\mathcal{G})f \) is a finitely generated \(\Lambda(\mathcal{H}) \)-module and

\[
S^* = \bigcup_{n \geq 0} p^n S.
\]

These are multiplicatively closed (left and right) Ore sets of \(\Lambda(\mathcal{G}) \) \([2]\), so we can define \(\Lambda(\mathcal{G})_S \), \(\Lambda(\mathcal{G})_{S^*} \) as the localizations of \(\Lambda(\mathcal{G}) \) at \(S \) and \(S^* \). We write \(\mathfrak{M}_\mathcal{H}(\mathcal{G}) \) for the category of all finitely generated \(\Lambda(\mathcal{G}) \)-modules, which are \(S^* \)-torsion. A finitely generated left module \(M \) is in \(\mathfrak{M}_\mathcal{H}(\mathcal{G}) \) if and only if \(M/M(p) \) is finitely generated over \(\Lambda(\mathcal{H}) \) \([2]\). It is conjectured that \(X(E/F_\infty) \) always lies in this category provided that \(E \) has good ordinary reduction at \(p \). We write \(K_0(\mathfrak{M}_\mathcal{H}(\mathcal{G})) \) for the Grothendieck group of the category \(\mathfrak{M}_\mathcal{H}(\mathcal{G}) \). Similarly, let \(\mathfrak{M}(\mathcal{G},p) \) denote the category of \(p \)-power-torsion finitely generated \(\Lambda(\mathcal{G}) \)-modules and \(\mathfrak{N}_\mathcal{H}(\mathcal{G}) \) the category of \(\Lambda(\mathcal{G}) \)-modules that are finitely generated over \(\Lambda(\mathcal{H}) \).

Lemma 1.1. Assume in addition that \(\mathcal{G} \) is a pro-\(p \) group. Then we have \(K_0(\mathfrak{M}_\mathcal{H}(\mathcal{G})) = K_0(\mathfrak{M}(\mathcal{G},p)) \oplus K_0(\mathfrak{N}_\mathcal{H}(\mathcal{G})) \).

Proof. By definition any module in \(\mathfrak{M}_\mathcal{H}(\mathcal{G}) \) is an extension of a module in \(\mathfrak{M}(\mathcal{G},p) \) and a module in \(\mathfrak{N}_\mathcal{H}(\mathcal{G}) \). Hence we have \(K_0(\mathfrak{M}_\mathcal{H}(\mathcal{G})) = K_0(\mathfrak{M}(\mathcal{G},p)) + K_0(\mathfrak{N}_\mathcal{H}(\mathcal{G})) \). Let \(M \) and \(N \) be \(\Lambda(\mathcal{G}) \)-modules as above. Now we claim that the map \([M] \mapsto [M(p)] \) is well defined and extends to a homomorphism \(K_0(\mathfrak{M}_\mathcal{H}(\mathcal{G})) \to K_0(\mathfrak{M}(\mathcal{G},p)) \). For this let

\[
0 \to A \to B \to C \to 0
\]

be a short exact sequence in \(\mathfrak{M}_\mathcal{H}(\mathcal{G}) \). Then we have \(\mu(B) = \mu(A) + \mu(C) \) for their \(\mu \)-invariants (as \(\Lambda(\mathcal{G}) \)-modules) since \(p \)-power-torsion \(\Lambda(\mathcal{G}) \)-modules that are finitely generated over \(\Lambda(\mathcal{H}) \) (ie. modules in \(\mathfrak{M}(\mathcal{G},p) \cap \mathfrak{N}_\mathcal{H}(\mathcal{G}) \)) clearly have trivial \(\mu \)-invariant. Here the \(\mu \)-invariant \(\mu(M) \)
Lemma 2.1. Let M be a finitely generated $\Lambda(G)$-module without elements of order p such that the centre $Z(G')$ is $Z \cong \mathbb{Z}_p$. Hence the homomorphism constructed is zero on $K_0(\mathfrak{M}_H(G))$. □

Further, if M is a left $\Lambda(G)$-module, then by $M^\#$ we denote the right module defined on the same underlying set with the action of $\Lambda(G)$ via the anti-involution $\# = (\cdot)^{-1}$ on G, i.e. for an m element in M and g in G, and the right action is defined by $mg := g^{-1}m$. By extending the right multiplication linearly to the whole Iwasawa algebra we get $mx = x^\# m$.

2 Central torsion Iwasawa-modules

In this section we are going to assume that $G' = H' \times Z$ is a compact pro-p p-adic Lie-group without elements of order p such that the centre $Z(G')$ is $Z \cong \mathbb{Z}_p$. So the above machinery applies to $G := G'$ and $H := H'$.

Lemma 2.1. Let M be a finitely generated central torsion $\Lambda(G)$-module without p-torsion. Then M represents the trivial element in the $K_0(\mathfrak{M}_H'(G'))$ if and only if it is $\Lambda(H')$-torsion.

Proof. One direction follows from the existence of a homomorphism

$$K_0(\mathfrak{M}_H'(G')) \to \mathbb{Z}$$

sending modules to their $\Lambda(H')$-rank. For the other direction assume that M is both $\Lambda(H')$- and $\Lambda(Z)$-torsion and choose (by the Weierstraß preparation theorem noting that M has no p-torsion) a distinguished polynomial $f(T)$ in $\mathbb{Z}_p[T] \subset \mathbb{Z}_p[[T]] \cong \Lambda(Z)$ annihilating M. We may assume without loss of generality that f is irreducible. Now we can take a projective resolution of M as a $\Lambda(G')/(f)$-module. Moreover, since $\Lambda(G')/(f)$ is a regular local ring we have $K_0(\Lambda(G')/(f))$ is isomorphic to \mathbb{Z}. On the other hand, the ring $\Lambda(G')/(f)$ is free of rank $\deg(f)$ over $\Lambda(H')$ and so M has trivial class in $K_0(\Lambda(G')/(f))$ as its rank is $\text{rk}_{\Lambda(G')/(f)}(M) = \text{rk}_{\Lambda(H)}(M)/\deg(f) = 0$. Since any finitely generated $\Lambda(G')/(f)$-module lies in $\mathfrak{M}_H'(G')$ the statement follows. □

Lemma 2.2. Let M be a $\Lambda(Z)$-torsion module in the category $\mathfrak{M}_H'(G')$. Then $\text{Ext}^1_{\Lambda(G)}(M^\#, \Lambda(G))$ is also $\Lambda(Z)$-torsion.

Proof. By the long exact sequence of $\text{Ext}(\cdot, \Lambda(G))$ we may assume without loss of generality that M is killed by a prime element f in the commutative algebra $\mathbb{Z}_p[[T]] \cong \Lambda(Z)$, i.e. f is either a distinguished polynomial or $f = p$. Since $M^\#$ is then killed by $f^\#$ and finitely generated over $\Lambda(G)$, it admits a surjective $\Lambda(G)$-homomorphism from a finite free module over $\Lambda(G)/(f^\#)$. So again by the long exact sequence of $\text{Ext}(\cdot, \Lambda(G))$ it suffices to show the statement for $M^\# = \Lambda(G)/(f^\#)$. However, we have $\text{Ext}^1_{\Lambda(G)}(\Lambda(G)/(f^\#), \Lambda(G)) \cong \Lambda(G)/(f^\#)$ therefore the statement. □

Lemma 2.3. Taking H'-coinvariants induces a homomorphism on the K_0-groups

$$H_*(H', \cdot): K_0(\mathfrak{M}_H'(G')) \to K_0(\mathfrak{M}_1(Z))$$

$$M \mapsto \sum_{i=0}^{\dim H' + 1} (-1)^i [H_i(H', M)]$$
where $K_0(\mathfrak{M}_1(Z))$ denotes the category of finitely torsion $\Lambda(Z)$-modules.

Proof. First of all note that since we have $Z \cong \mathbb{Z}_p$, a finitely generated $\Lambda(Z)$-module N belongs to $\mathfrak{M}_1(Z)$ if and only if it has finite \mathbb{Z}_p-rank or, equivalently, if $N/N(p)$ is finitely generated over \mathbb{Z}_p. On the other hand, if M lies in $\mathfrak{M}_{H'}(G')$ then $H_i(H', M(p))$ is killed by a power of p and $H_i(H', M/M(p))$ is finitely generated over \mathbb{Z}_p. In particular both are $\Lambda(Z)$-torsion. The statement follows from the long exact sequence of H'-homology noting that H' has p-cohomological dimension $\leq \dim H' + 1$. \hfill \Box

3 Selmer groups that are not central torsion

In this section E will be an elliptic curve defined over \mathbb{Q} without complex multiplication and with good ordinary reduction at the prime $p \geq 5$. We put $G := \text{Gal}(\mathbb{Q}(E[p^\infty])/\mathbb{Q})$ and $H := \text{Ker}((\cdot)^{p-1} \circ \det |_{G \leq \text{Aut}_{\mathbb{Z}_p}(T_p(E)))})$. Therefore G/H is isomorphic to a finite index subgroup of $1 + p\mathbb{Z}_p \cong \mathbb{Z}_p$ so that the machinery of section 1 applies. Moreover, $G' \leq G$ will be an open subgroup with the properties in section 2. For instance, we could take $G' := 1 + p^r \mathbb{M}_2(\mathbb{Z}_p)$ (under an identification of G with an open subgroup of $\text{GL}_2(\mathbb{Z}_p)$) for some integer r large enough to assure $G' \leq G$.

Proposition 3.1. Let E be an elliptic curve defined over \mathbb{Q} without complex multiplication and with good ordinary reduction at the prime p. Moreover, assume that the j-invariant of E is non-integral and the dual Selmer $X(E/F_\infty)$ is in the category $\mathfrak{M}_H(G)$. Then $X(E/F_\infty)$ is not annihilated by any element of $\Lambda(Z)$.

Proof. We prove by contradiction and assume that $X(E/F_\infty)$ is $\Lambda(Z)$-torsion. We proceed in 3 steps.

Step 1. By Lemma 2.2 $\text{Ext}^1(X(E/F_\infty)\#, \Lambda(G))$ is also $\Lambda(Z)$-torsion. On the other hand, Theorem 5.2 in [3] provides us with $\Lambda(G)$-homomorphism

$$\varphi : X(E/F_\infty) \rightarrow \text{Ext}^1(X(E/F_\infty)\#, \Lambda(G))$$

such that $\text{Ker}(\varphi)$ is finitely generated over \mathbb{Z}_p (so it represents the trivial element in $\mathfrak{M}_H(G)$) and $\text{Coker}(\varphi)$ represents the same element in $\mathfrak{M}_H(G)$ as

$$\bigoplus_{v_q(j_E) < 0} \Lambda(G) \otimes_{\Lambda(G_q)} T_p(E)^v =: \bigoplus_{v_q(j_E) < 0} M_q . \quad (1)$$

Since the module in (1) has no p-torsion, we deduce that $\text{Coker}(\varphi)(p)$ has trivial class in $K_0(\mathfrak{M}_{H'}(G'))$ by Lemma 1.1 for any pro-p open subgroup $H' \times Z = G' \leq G$ with $Z = Z(G') \cong \mathbb{Z}_p$. We are going to fix such a pro-p open subgroup G' later on depending on the ramification properties of $\mathbb{Q}(E[p^\infty])$ at the potentially multiplicative primes q. We are going to show that (1) is on one hand $\Lambda(H')$-torsion, on the other hand, it does not have a trivial class in $K_0(\mathfrak{M}_{H'}(G'))$. This will contradict to Lemma 2.1.

Step 2. In order to show that the class of (1) is nonzero in $K_0(\mathfrak{M}_{H'}(G'))$, we apply the homomorphism $H_*(H', \cdot)$ defined in Lemma 2.3 and show that its image

$$[H_*(H', \bigoplus_{v_q(j_E) < 0} M_q)] = \sum_{v_q(j_E) < 0} \sum_{i=0}^4 (-1)^i [H_i(H', M_q)] \quad (2)$$
is nonzero, but has rank 0 over \(\mathbb{Z}_p \). The latter implies that \(\square \) is \(\Lambda(H') \)-torsion.

To compute the \(\Lambda(\mathbb{Z}) \)-characteristic ideal of the right hand side of \(\square \) we have the following

Lemma 3.2. For any finitely generated \(\Lambda(G_q) \)-module \(N \) there is an isomorphism

\[
H_i(H', \Lambda(G) \otimes_{\Lambda(G_q)} N) \cong \Lambda(G/H') \otimes_{\Lambda(G_q/(H' \cap G_q))} H_i(H' \cap G_q, N)
\]

of \(\Lambda(G/H') \)-modules.

Proof. The commutative diagram

\[
\begin{array}{ccc}
G_q & \longrightarrow & G \\
\downarrow & & \downarrow \\
G_q/(H' \cap G_q) & \longrightarrow & G/H'
\end{array}
\]

induces two spectral sequences

\[
E^2_{p,q}(N) = \text{Tor}^\Lambda_G(\Lambda(G/H'), \text{Tor}^\Lambda_G(\Lambda(G), N)) \\
E^2_{p,q}(N) = \text{Tor}^\Lambda_{G_q/(H' \cap G_q)}(\Lambda(G/H'), \text{Tor}^\Lambda_{G_q}(\Lambda(G_q/(H' \cap G_q)), N))
\]

both computing \(\text{Tor}^\Lambda_{G_q}(\Lambda(G/H'), N) \). The result follows noting that \(\Lambda(G) \) (respectively \(\Lambda(G_q/(H' \cap G_q)) \)) is flat over \(\Lambda(G_q) \) (respectively over \(\Lambda(G_q/(H' \cap G_q)) \)). \(\square \)

Step 3. By Lemma 3.2 we are reduced to computing the local homology groups \(H_i(H' \cap G_q, T_p(E)^\vee) \). By the theory of the Tate curve there exists a finite extension of \(\mathbb{Q}_q(\mu_p) \leq \mathbb{F}_q \) contained in \(\mathbb{Q}_q(E[p^\infty]) \) over which \(E \) achieves split multiplicative reduction and \(E[p^\infty] \) is isomorphic to \((\mu_{p^\infty} \times t^{\mathbb{Z}/p^\infty})/t^t \) as a Gal(\(\overline{\mathbb{Q}_q}/\mathbb{F}_q \))-module for some element \(t \in F_q^\times \) with \(|t|_q < 1 \). Hence the image \(G_{q,0} \) of the subgroup \(\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{F}_q) \leq \text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \) in \(G_q \) has the following properties:

\begin{enumerate}
 \item \(G_{q,0} \cong H_{q,0} \times \Gamma_{q,0} \) with \(H_{q,0} \cong \Gamma_{q,0} \cong \mathbb{Z}_p \) such that the conjugation action of \(\Gamma_{q,0} \) on \(H_{q,0} \) is given by the cyclotomic character \(\chi_{q,cyc} \);
 \item \(\Gamma_{q,0} \cap H' = \{ 1 \} \);
 \item there exists a \(\mathbb{Z}_p \)-basis of \(T_p(E) \) inducing an inclusion \(G_q \leq G \leq \text{GL}_2(\mathbb{Z}_p) \) such that
 \[
 H_{q,0} \leq H_{q,1} := \begin{pmatrix} 1 & \mathbb{Z}_p \\ 0 & 1 \end{pmatrix} \leq G \leq \text{GL}_2(\mathbb{Z}_p).
 \]
\end{enumerate}

Therefore the local \(H_{q,1} \times \Gamma_{q,0} \)-module \(T_p(E)^\vee = \text{Hom}_{\mathbb{Z}_p}(T_p(E), \mathbb{Z}_p) \cong T_p(E)(-1) \) fits into the exact sequence

\[
0 \to X\mathbb{Z}_p[[X]] \to X^{-1}\mathbb{Z}_p[[X]] \to T_p(E)^\vee \to 0
\]

where we identified \(\mathbb{Z}_p[[X]] \) with \(\Lambda(H_{q,1}) \). Since \(H_{q,0} \) has finite index in \(H_{q,1} \) the above is a projective resolution of \(T_p(E)^\vee \) as a \(\Lambda(H_{q,0}) \)-module. Hence we may compute explicitly its \(H_{q,0} \)-homology as a \(\Gamma_{q,0} \)-module to obtain isomorphisms

\[
H_0(H_{q,0}, T_p(E)^\vee)/H_0(H_{q,0}, T_p(E)^\vee)(p) \cong \mathbb{Z}_p(-1);
H_1(H_{q,0}, T_p(E)^\vee)/H_1(H_{q,0}, T_p(E)^\vee)(p) \cong \mathbb{Z}_p(1);
\]
and $H_i(H_{q,0}, T_p(E)^\vee) = 0$ for $i > 1$.

Moreover, we may choose the open subgroup $G' = H' \times Z \leq G$ sufficiently small (depending on all the prime numbers q at which E has potentially multiplicative reduction) so that (by possibly further increasing F_q for some q) we have $G_{q,0} = G' \cap G_q$, $H_{q,0} = H' \cap G_q$ and the composite map $\Gamma_{q,0} \hookrightarrow G_{q,0} \hookrightarrow G' \twoheadrightarrow Z = G'/H'$ is an isomorphism for all prime numbers q in question. Further, by the local and global Weil pairings, the local, resp. global cyclotomic fits into the commutative diagram

$$
\begin{array}{ccc}
\Gamma_{q,0} & \xrightarrow{\sim} & Z \\
\chi_{q,cyc} & \downarrow & \chi_{cyc} \\
\mathbb{Z}_p^\times & \cong & \mathbb{Z}_p^\times \\
\end{array}
$$

We deduce that the isomorphisms (4) and (5) also hold as $\Lambda(Z)$-modules. Using Lemma 3.2 with $N = T_p(E)^\vee$ the right hand side of (2) equals

$$
\sum_{\nu_q(jE) < 0} |G : G_qH'| ([\mathbb{Z}_p(-1)] - [\mathbb{Z}_p(1)])
$$

in $K_0(\mathfrak{M}_1(Z))$. Indeed, since Z lies in the centre of G we have the isomorphism

$$
\Lambda(G/H') \otimes_{\Lambda(G_q/(H' \cap G_q))} H_i(H' \cap G_q, T_p(E)^\vee) \cong \bigoplus_{j=1}^{[G:G_qH']} H_i(H' \cap G_q, T_p(E)^\vee)
$$

of $\Lambda(Z)$-modules for $i = 0, 1$.

Since both $\mathbb{Z}_p(-1)$ and $\mathbb{Z}_p(1)$ have rank 1 over \mathbb{Z}_p we immediately see that (1) is $\Lambda(H')$-torsion. On the other hand, the characteristic ideal of $\mathbb{Z}_p(-1)$ is $(z - \chi_{cyc}(z^{-1})) < \Lambda(Z)$ that is clearly different from the characteristic ideal $(z - \chi_{cyc}(z))$ of $\mathbb{Z}_p(1)$ where z denotes a topological generator of the group Z. So the characteristic power series of (6) equals

$$
\left(\frac{T^{1 - \chi_{cyc}(z^{-1})}}{T^{1 - \chi_{cyc}(z)}}\right) \sum_{|G:G_qH'|} [G:G_qH']
$$

which is not a unit in $\mathbb{Z}_p[[T]] \cong \Lambda(Z)$.

\square

Corollary 3.3. Let E be an elliptic curve defined over \mathbb{Q} without complex multiplication and with good ordinary reduction at the prime p. Moreover, assume that the j-invariant of E is non-integral, the dual Selmer $X(E/F_\infty)$ has no nonzero $\Lambda(H)$-torsion submodule and has rank 1 over $\Lambda(H)$. Then $X(E/F_\infty)$ has no nonzero $\Lambda(Z)$-torsion submodule either. In particular, it is completely faithful.

Proof. Assume that $0 \neq M \leq X(E/F_\infty)$ is the $\Lambda(Z)$-torsion part of $X(E/F_\infty)$. As $X(E/F_\infty)$ has no $\Lambda(H)$-torsion, M also has rank 1 over $\Lambda(H)$. In particular, $X(E/F_\infty)/M$ is $\Lambda(H)$-torsion. Choose an arbitrary element $x \in X(E/F_\infty)$. The we have $0 \neq \lambda_1 \in \Lambda(H)$ such that $\lambda_1x \in M$ hence there is a $\lambda_2 \in \Lambda(Z)$ such that $\lambda_2\lambda_1x = 0$. Since λ_2 lies in the centre, we conclude that $\lambda_1(\lambda_2x) = 0$. Since $X(E/F_\infty)$ has no $\Lambda(H)$-torsion, we have $\lambda_2x = 0$ and $x \in M$.

\square
References

