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In this course we intend to advertise the usefulness and relevance of the p-adic numbers.
Instead of concentrating on the proof of one particular theorem, our goal is to give an idea
of 1) how things work in the p-adic world; 2) what questions can be answered using them; 3)
what directions of current research there are.

The book [4] that we will mostly follow in motivating p-adics is an excellent introduction.
The books [7, 12] are more advanced. The former gives a concise introduction to the theory
of p-adic L-functions (and zeta-functions) and the latter contains an elementary proof of the
Hasse-Minkowski theorem.

1 Why p-adic numbers?
Historically, the main motivation for the developement of algebraic number theory was

the attempt to prove Fermat’s Last Theorem, ie. when n ≥ 3 is an integer then there are no
integer solutions of xn + yn = zn with xyz 6= 0. This was such a problem in mathematics
whose solution required the systematic study of several areas and led to the developement of
arithmetic geometry, among many others.

Arithmetic algebraic geometry is the area of mathematics dealing with the rational or
integer solutions of polynomial equations.

Over the last century, p-adic numbers have played a very important role in arithmetic
geometry. They were introduced by Kurt Hensel in 1897 motivated by the analogies of Z
with field of fractions Q and C[t] (complex polynomials in 1 variable) with field of fractions
C(t). Note for instance that both Z and C[t] are unique factorisation domains, ie. any element
can be decomposed (upto units uniquely) as a product of primes. While the primes in Z are
the usual prime numbers, the primes in C[t] are the linear polynomials t − α (α ∈ C).
Moreover, any rational number can be written as the quotient of two integers; similarly,
any rational function can be—by definition—written as a quotient of two polynomials. The
analogy, in fact, is much deeper. We may write each polynomial P (t) in the form P (t) =
a0+a1(t−α)+a2(t−α)2+ · · ·+an(t−α)n (with ai ∈ C) and each integer m ≥ 0 in the form
m = a0 + a1p + · · · + anp

n with ai ∈ {0, 1, . . . , p− 1}. The expansion in t− α will show, for
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example, whether or not the polynomial vanishes at t = α and if so, to which order. On the
other hand, for integers this expansion tells us to what order p divides m. Moreover, in case
of quotients of polynomials we can push this further. Taking f(t) = P (t)/Q(t) and α ∈ C we
may expand

f(t) = an0(t− α)n0 + an0+1(t− α)n0+1 + · · · =
∑
i≥n0

ai(t− α)i .

This is called the Laurent series expansion of f around α.

• We can have n0 < 0 here—this happens if and only if the order of the root of Q(t) at
α is bigger than the order of the root of P (t) at α. In complex analysis we say in this
case that f has a pole at α of order −n0.

• The expansion will not be finite. In fact, it will only be finite if Q(t) is constant times
a power of t − α. One can show that the series will be convergent in a punctured
neighbourhood of α, but for now we regard the expression above as a formal Laurent
series, ignoring the question of convergence.

Why don’t we try the same for the rational numbers? We may write both the numerator and
denominator in base p and divide formally. For example, with p = 5 we obtain

35

31
=

2p+ p2

1 + p+ p2
= 2p+ 4p2 + 3p3 + p4 + 4p5 + 4p6 + . . . .

To check that this is indeed correct we multiply both sides by 31 = 1 + p+ p2 and use p = 5
to compute (expanding upto p6)

(1 + p+ p2)(2p+ 4p2 + 3p3 + p4 + 4p5 + 4p6 + . . . ) =

= (2p+ 2p2 + 2p3) + (4p2 + 4p3 + 4p4) + (3p3 + 3p4 + 3p5)+

+(p4 + p5 + p6) + 4p5 + 4p6 + 4p6 + · · · =
= 2p+ 6p2 + 9p3 + 8p4 + 8p5 + 8p6 + · · · =
= 2p+ p2 + 10p3 + 8p4 + 8p5 + 8p6 + · · · =

= 2p+ p2 + 10p4 + 8p5 + 8p6 + · · · = 2p+ p2

This above is not precise at all (with all those dots) but at least you should get the feeling
what is going on. However, it is easy to check that this can always be done and the process
gives an infinite expansion

a

b
= an0p

n0 + an0+1p
n0+1 + . . .

of any (positive, for now) rational number a/b with ai ∈ {0, 1, . . . , p− 1}. This even reflects
the properties of the rational number a/b “near p” (or “locally at p”), ie. if (a, b) = 1 then
n0 < 0 if and only if p | b. You could ask what happens to the negatives? As any negative
number is a product of −1 and a positive number, it suffices to expand −1:

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · ·+ (p− 1)pn + . . . .

If we return for the moment to the case of rational functions, each f(t) ∈ C(t) can be
expanded as Laurent series at each primes t − α. However, we have seen many functions at
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calculus class having a Laurent (even Taylor) series expansion that are not a quotient of two
polynomials, for instance et or sin t. We may even ignore convergence and take the field C((t))
of all formal Laurent series (with finite “tail”). The field C(t) of rational functions is a subfield
of this. The field Qp of p-adic numbers is the analogue of C((t)), ie. the set

Qp = {an0p
n0 + an0+1p

n0+1 + · · · | ai ∈ {0, 1, . . . , p− 1}, n0 ≤ i}

of finite-tailed (= “finite to the left”, but usually infinite to the right) Laurent series with
the above described multiplication and addition. Note that unlike in C((t)) we need to “carry
over”, e.g. (2 + 0 · p + . . . ) + ((p − 1) + 0 · p + . . . ) = 1 + 1 · p + . . . . We denote by Zp the
subring of those elements in Qp with n0 ≥ 0. This subset is indeed closed under addition and
multiplication.

1.1 Exercises

Exercise 1.1. Suppose that f(t) = P (t)/Q(t) is in lowest terms so that P (t) and Q(t) do
not have common zeros. Show that the expansion of f(t) in t − α is finite if and only if
Q(t) = am(t− α)m for some 0 ≤ m ∈ Z and 0 6= am ∈ C.

Exercise 1.2. Consider a p-adic number x = a0 + a1p + · · · + anp
n + . . . . What is the

expansion of −x?

Exercise 1.3. Show that Qp is indeed a field.

Problem 1.4. Prove that the p-adic expansion of an element in Qp is eventually periodic if
and only if the element is rational (ie. lies in Q). Hint: Mimic the proof of the analogous
statement in R

2 Solving equations in Qp

We would like to illustrate how solving equations in the p-adics is related to solving
equations modulo pn. For example, take p = 7 and consider the equation x2 = 2. Solve it first
mod 7, we find right away that x ≡ ±3 (mod 7) is a solution. Then proceed to mod 72 and
look for the solution in the form x = 3+7x1 (or x = −3+7x1). (3+7x1)

2 = 9+42x1+49x21 ≡
9 + 42x1 (mod 49), so we need 9 + 42x1 ≡ 2 (mod 49), that is x1 ≡ 1 (mod 7). Note that in
this second step we only need to solve a linear equation, not quadratic any more. Now we go
on to 73 and look for the solution in the form x = 3+1 · 7+72x2. By a similar calculation we
obtain x2 ≡ 2 (mod 7). And so forth we obtain a solution x = 3+ 7+ 2 · 72 + · · · ∈ Q7 of the
equation x2 = 2. (In particular we see that Q ( Q7.) Similarly, we will also find a solution of
the form x = 4+5 · 7+ · · · ∈ Q7 starting with the solution −3 ≡ 4 (mod 7). As Q7 is a field,
we have found all the solutions. All this worked out pretty well because 7 does not divide the
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discriminant of the polynomial x2 − 2. The tree of solutions in Z7 looks like
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What happens if the prime p does divide the discriminant of our equation? Let us have a look
at the equation x2 = 9 in Q3. Modulo 3 this has only one double root, x ≡ 0 (mod 3). So
we are looking for the solution in the form x = 3x1 and (3x1)

2 ≡ 9 ≡ 0 (mod 9) is satisfied
trivially for any x1 = 0, 1, 2, therefore we have 3 solutions of x2 = 9 in Z/9Z, namely 0, 3, and
6. Now we look at the equation mod 33 = 27. (3x1)

2 ≡ 9 (mod 27) has solutions x1 ≡ 1, 2
(mod 3). Hence we have {x ∈ Z/27Z | x2 = 9} = {3, 6, 12, 15, 21, 24}. In other words, the
solutions x ≡ 3, 6 (mod 9) can be lifted to a solution mod 27 in three ways, but the solution
x ≡ 0 (mod 9) cannot be lifted. By proceeding further, it is not hard to see that we will
always have either 3 or 0 lifts of each solution mod 3n to a solution mod 3n+1 for all n ≥ 1
and the tree
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of solutions have 2 infinite branches (and many finite) contending to the fact that there are
only 2 solutions (namely x = ±3) in Q3.

2.1 Exercises

Exercise 2.1. Give a rigorous proof that the above process gives you a solution of x2 = 2 in
Q7.
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Exercise 2.2. Prove that x2 + 1 = 0 has a solution in Q5, but not in Q7. Can you describe
the primes p for which this equation has a solution in Qp?

Problem 2.3. Show that if f(x) ∈ Z[x] is a monic polynomial and p is a prime then all
the solutions of f(x) = 0 in Qp lie in fact in Zp. Hint: Prove by contradiction and try and
compute the first nonzero term of f(α) for α ∈ Qp \ Zp.

Problem 2.4. Prove that the field Qp is not algebraically closed for any prime number p.
Can you construct an irreducible polynomial over Qp of any given degree 0 < n ∈ Z?

Problem 2.5. Verify that the inclusion Q ↪→ Qp is strict for any prime number p. Hint: You
could argue by noting that the cardinality of Qp is bigger than the cardinality of Q, but there
is also an algebraic argument.

3 Precise definition of Qp

Definition 3.1. Let K be a field. We call a function | · | : K → R≥0 an absolute value (or
multiplicative valuation) on K, if it satisfies

(1) |x| = 0 ⇐⇒ x = 0;

(2) |xy| = |x||y|;

(3) |x+ y| ≤ |x|+ |y| (triangle inequality).

The absolute value | · | induces a metric d(x, y) := |x − y| on K. This way K becomes a
metric space, in particular, there is a topology on it.

Example 3.2. The trivial absolute value: |x| = 1 if x 6= 0 and |0| = 0.

Definition 3.3. We say that the two absolute values | · |1 and | · |2 on K are equivalent, if
they induce the same topology.

Proposition 3.4. | · |1 and | · |2 are equivalent if and only if there exists a real number s > 0
such that |x|1 = |x|s2 for all x ∈ K.

Proof. The implication ⇐ is trivial. Conversely, note that |x|i < 1 holds if and only if the
powers of x tend to zero in the absolute value | · |i (i = 1, 2). Hence if | · |1 and | · |2 induce
the same topology then |x|1 < 1 ⇐⇒ |x|2 < 1. Applying this to x = a/b and x = b/a we
obtain |a|1 ≤ |b|1 ⇔ |a|2 ≤ |b|2 (a, b ∈ K). In particular, if one of | · |1 and | · |2 is trivial
then so is the other. Therefore we may assume that there exists a y ∈ K such that |y|1 > 1
(whence |y|2 > 1), so we choose 0 < s := log|y|2 |y|1 ∈ R so that we have |y|1 = |y|s2. Now
for any 0 6= x ∈ K there is an α = α(x) ∈ R with |x|1 = |y|α1 . We choose the sequence
(mi

ni
)i∈N (mi, ni ∈ Z, ni 6= 0) of rational numbers so that limi→∞

mi

ni
= α + 0. We obtain

|x|1 = |y|α1 < |y|
mi/ni

1 , hence |xni|1 < |ymi |1, whence |xni |2 < |ymi|2, ie. |x|2 < |y|mi/ni

2 . Letting
i→∞ we deduce |x|2 ≤ |y|α2 . The inequality |x|2 ≥ |y|α2 is proven in a similar fashion, so we
have |x|1 = |y|α1 = |y|sα2 = |x|s2 for all 0 6= x ∈ K (and, of course, also for x = 0).
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Definition 3.5. We say that the absolute value | · | non-archimedean if the set {|n · 1| : n ∈
Z} ⊆ R is bounded. Otherwise | · | is archimedean.

Remark. The above definition is equivalent to saying that the ring homomorphism f : Z→
K, f(1) = 1 has bounded image in K if and only if | · | is non-archimedean.

Example 3.6. 1. The trivial absolute value is non-archimedean.

2. The usual absolute value (that we denote by | · |∞ in this note) on R (or on C, or on
any subfield K ≤ C) is archimedean.

3. Let p be a prime. The p-adic absolute value | · |p on Q is defined by |a
b
pn|p = p−n where

p - a, b ∈ Z (and |0|p = 0). This is non-archimedean, since whenever a
b
pn ∈ Z we have

n ≥ 0 and |a
b
pn|p = p−n ≤ 1.

Proposition 3.7. The absolute value | · | is non-archimedean if and only if the so called
ultrametric inequality holds:

(3′) |x+ y| ≤ max(|x|, |y|).

Moreover, if | · | is non-archimedean then {|n · 1|, n ∈ Z} is not only bounded, but bounded by
1.

Proof. If (3′) holds then we have |n · 1| ≤ |1| = 1. On the other hand, for 0 < k ∈ Z, |x| ≥ |y|
and |n · 1| ≤ C for some 0 < C ∈ R then we have

|x+ y|k = |(x+ y)k| = |
k∑
j=0

(
k

j

)
xjyk−j| ≤

k∑
j=0

|
(
k

j

)
· 1||x|j|y|k−j ≤

k∑
j=0

C|x|k = (k+1)C|x|k .

Taking kth root and letting k →∞ the statement follows.

Theorem 3.8 (Ostrowski). On Q any nontrivial absolute value | · | is equivalent to either the
real | · |∞ or the p-adic | · |p absolute value for some prime p. These valuations are pairwise
inequivalent.

Proof. Case 1: | · | is non-archimedean. If we have |p| = 1 for all primes p then the absolute
value is trivial (see Exercise 3.1). So we may take a prime p such that ‖p‖ < 1. Therefore
the set A := {a ∈ Z : ‖a‖ < 1} contains p and is an ideal in Z as it is closed under addition
by (3′) and also by multiplication by any integer because of (2) (see Proposition 3.7). On the
other hand, 1 6∈ A so we have A = (p) as (p) is a maximal ideal in Z. Hence for p - a, b ∈ Z
we have |a| = |b| = 1 and |a

b
pn| = |p|n = |a

b
pn|sp where s := log1/p |p|.

Case 2: | · | is archimedean. Let 1 < m,n ∈ Z be arbitrary.

Lemma 3.9. We have |m|1/ logm = |n|1/ logn. (Here log denotes, say, the natural logarithm,
in fact the base doesn’t matter.)

Proof. Write m in base n, ie. m =
∑r

i=0 ain
i where 0 ≤ ai < n (0 ≤ i ≤ r). So we have

nr ≤ m, whence r ≤ logm
logn

and |ai| ≤ ai|1| = ai ≤ n. Therefore we compute

|m| = |
r∑
i=0

ain
i| ≤

r∑
i=1

|ai||n|i . (1)
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Note that |n| ≤ 1 implies |m| ≤ nr ≤ n logm
logn

. Applying this to m replaced by mk and

taking kth root we obtain |m| ≤ k

√
kn logm
logn

. Letting k → ∞ we get an upper bound for |m|
independent of m which contradicts to the assumption | · | being archimedean. So we have
|n| > 1, and using (1) we compute

|m| ≤
r∑
i=0

|ai||n|i ≤ |n|r
r∑
i=0

|ai| ≤ |n|rn(r + 1) ≤ |n|logm/ lognn(1 + logm

log n
) .

Substituting mk into m, taking kth root, and letting k → ∞ we obtain |m| ≤ |n|logm/ logn.
The statement follows by interchanging m and n.

Put s := log |n|
logn

for some fixed 1 < n ∈ Z. By the above Lemma 0 < s and s does not
depend on the choice of n. So we have |m| = es logm = ms = |m|s∞ for all 1 < m ∈ Z. The
statement follows for all nonnegative rational numbers by taking quotients and by Exercise
3.1 for negative rationals.

Definition 3.10. The field K is said to be complete with respect to the absolute value | · | if
any Cauchy sequence is convergent.

Example 3.11. Both R and C are complete with respect to | · |∞, but Q is only complete with
respect to the trivial absolute value.

In the following we are going to show that any field K with an absolute value | · | can be
embedded isometrically as a subfield into a complete field. We define

R := {(an)n ∈ KN : ∀ε > 0∃N ∈ N s. t. |an − am| < ε for all m,n ≥ N}

as the ring of Cauchy sequences in K. This is indeed a ring with respect to the pointwise
addition and multiplication. Note that K can be embedded into R diagonally, ie. we have
a ring homomorphism ι : K ↪→ R defined by ι(c) := (c)n. Let I0 ⊂ R be the set of those
sequences that are identically 0 except for finitely many terms. This set is an ideal in R. Let
R0 := R/I0 the quotient. We may think of R0 as the ring of equivalence classes of Cauchy
sequences with respect to the equivalence relation (an)n ∼ (bn)n if an = bn for all but finitely
many n ∈ N.

Proposition 3.12. R0 is a local ring. Its unique maximal ideal consists of the those Cauchy
sequences that converge to 0 (“zero sequences”).

Remark. In case you just heard this expression for the first time a commutative ring R is
said to be a local ring if it has a unique maximal ideal.

Proof. Let M ⊂ R be the set of zero sequences. It is clear that I0 ⊂ M and M is an ideal
in R. On the other hand, if (an)n is a Cauchy sequence with an 6→ 0 then 1/an makes sense
if n is large enough and is also a Cauchy sequence. This shows that the equivalence class of
(an)n is invertible in R0. Therefore M is indeed the unique maximal ideal of R containing I0,
or equivalently, M/I0 is the unique maximal ideal in R0 by Exercise 3.4.

Definition 3.13. Let K be a field with an absolute value | · |. We define K̂ := R/M to be the
completion of K wrt. | · |. Note that this is indeed a field as M is a maximal ideal in R.
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Note that the composite map K
ι
↪→ R → K̂ = R/M is still injective: if 0 6= c ∈ K the

the constant c sequence does not tend to 0 hence does not lie in M . So from now on we
identify K with its image in K̂. We still need to verify that K̂ is indeed complete in order to
justify the term “completion”. (In fact we also need the universal property of K̂ for being the
completion, ie. any ismoetric field homomorphism ϕ : K → F into a valued field F factors
through K̂.) For this we first need to extend | · | from K to K̂. Since the topology on K is
defined so that the map | · | : K → R is continuous, it takes any Cauchy sequence in K to a
Cauchy sequence in R. As R is complete, we may define |(an)n| as a limit limn→∞ |an|. So we
obtain a valuation R and M is the set of elements with valuation 0 by definition. Therefore
the absolute of (an)n ∈ R only depends on its class in R/M = K̂. This way we obtain an
absolute value on K̂ which we still denote by | · |. We leave the proof of the fact that K̂
is indeed complete and has the required universal property to the reader as an exercise (see
Exercises 3.6 and 3.7).

Definition 3.14. The field Qp of p-adic numbers is the completion of Q with respect to the
p-adic absolute value | · |p.

3.1 Exercises

Exercise 3.1. Show that if | · | is any absolute value on the field K then we have |1| = 1 and
| − x| = |x|.

Exercise 3.2. Show that in an ultrametric space all triangles are isosceles.

Exercise 3.3. Show that the absolute value | · |p on Q satisfies the axioms (1)− (3).

Problem 3.4. Show that a commutative ring R is local if and only if it contains an ideal
I CR such that all the elements in R \ I are invertible in R.

Exercise 3.5. Verify the axioms (1)−(3) for the absolute value |·| on K̂ if K̂ is the completion
of a valued field (K, | · |).

Problem 3.6. The field K̂ is complete wrt. | · |. Hint: We need to show that any Cauchy
sequence of Cauchy sequences converges to a Cauchy sequence. You can construct the limit
sequence as taking the nith term of the ith sequence for ni large enough (depending on i and
the actual sequnce). It is a usual elementary argument in first year analysis how to choose
these ni.

Exercise 3.7. Verify the universal property of K̂, ie. all ϕ : K → F isometric field embeddings
factor through K̂ uniquely. Also show that K is dense in K̂. Hint: Take a complete field F
with respect to the absolute value | · | and an isometric embedding ϕ : K → F of K as subfield
of F . Extend ϕ to R as ϕ̃((an)n) := limn ϕ(an). Since (an)n is a Cauchy sequence and F is
complete, this makes sense. The kernel of ϕ̃ is exactly M , in particular it factors through
K̂ = R/M .

Problem 3.8. Show that the field Qp of p-adic numbers constructed in the previous section
is indeed the completion of Q wrt. the absolute value | · |p.
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Exercise 3.9. Let (K, | · |) be a—not necessarily complete—non-archimedean valued field.
We define OK := {a ∈ K : |a| ≤ 1} to be the ring of integers in K. Show that this is indeed
a subring, moreover, a local ring with maximal ideal MK := {a ∈ K : |a| < 1}. The field
OK/MK is called the residue class field of K. Hint: Use Exercise 3.4 and note that the
elements with absolute value 1 are invertible in OK .

Exercise 3.10. Show that the ring of integers in Qp is Zp.

Exercise 3.11. Show that the image of |·|p : Qp → R is the same as the image of its restriction
to Q, namely {0} ∪ pZ ⊂ R.

Problem 3.12. What is the region of convergence of the Taylor series of log(1 + x) and
exp(x) at 0 in Qp?

4 Towards irreducibility criteria for polynomials over Q
Exercise 4.1. a) Show that the polynomial x5 − 2x2 + 6x− 10 ∈ Q[x] is irreducible.

b) Show that the polynomial x2 + 1 ∈ Q[x] is irreducible.

We note that the above polynomial in a) satisfies Eisenstein’s criterion for p = 2 as 2
divides all the coefficients except for the leading term and 4 does not divide the constant
term. In fact, in this proof we only used the prime 2 so the same proof works over Q2, as
well. On the other hand, the polynomial in b) is irreducible even over R, so, in particular, it
is irreducible over Q. What is the common in these examples?

In fact, Eisenstein’s criterion is really a statement over Qp, not over Q. Whenever a
polynomial in Q[x] is irreducible over some Qp or over R we may deduce its irreducibility over
Q, so the method is basically the same in the two examples, but we used different completions.

Over R it is easy to describe all the irreducible polynomials. These are the linear polyno-
mials, and those quadratics that do not have a root in R. What about Qp? Can we describe
all the irreducible polynomials? The answer is yes, and we need Newton polygons for that.
This will provide us with new irreducibility criteria—similar to Eisenstein’s—over Q. How-
ever, our job is a little bit harder than over R, as the algebraic closure of Qp is not a quadratic
extension of Qp, not even a finite extension.

Exercise 4.2. Show that the polynomial x5 − 2x4 + 4 ∈ Q[x] is irreducible.

“Solution”. This is not an Eisenstein polynomial for p = 2 (nor for any other prime) as 4
divides the constant term. What next? The idea is to have a look at the 2-adic absolute
values of the roots of this polynomial. Assume we decompose this polynomial x5− 2x4 +4 =
(x − α1)(x − α2)(x − α3)(x − α4)(x − α5) over a larger field Q < Q2 ≤ K and put ci :=
− log2 |αi|2 ∈ R (1 ≤ i ≤ 5). Then we have

∏5
i=1 αi = −4 hence

∑5
i=1 ci = − log2 | − 4|2 = 2.

Moreover we compute |α5
i |2 = 1

25ci
and |2α4

i | = 1
24ci+1 . Since in the ultrametic world all

triangles are isosceles, we have 5ci = 4ci + 1 or min(5ci, 4ci + 1) = 2 by the ultrametric
inequality. Note that 5ci ≥ 4ci + 1 is impossible as otherwise α5

i − 2α4
i = −4 would be

divisible by 25 which is nonsense. Therefore we have ci = 2/5 for all 1 ≤ i ≤ 5. Now assume
that x5− 2x4 +4 = g(x)h(x) with monic nonconstant g, h ∈ Qp[x]. Then g(x) is a product of
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some x−αi (1 ≤ i ≤ 5). Therefore g(0) is a product of some of the αi (upto sign) therefore its
2-adic absolute value is |g(0)| = |αi|deg g = 22 deg g/5. However, g(0) ∈ Qp, so its absolute value
is an integer power of 2. So 5 | deg g gives us a contradiction as neither g nor h is constant.
Therefore x5 − 2x4 + 4 is irreducible over Qp hence also over Q.

The problem with the above solution is that we have not quite defined the p-adic absolute
value of an element of an extension of Qp. Let alone showing it satisfies the ultrametric
inequality. So we are going to do this in the sequel in a precise way.

4.1 Hensel’s Lemma

There are various forms of Hensel’s Lemma. We are going to prove the version that is
needed for extending absolute values from K to a finite field extension as this is needed for
Newton polygons. It is in some sense the precise generalization of our observations concerning
the solutions of x2 = 2 in Q7. Let K be a complete non-archimedean field with respect to
the valuation | · |, denote by O = OK = {x ∈ K | |x| ≤ 1} its ring of integers, by p = {x ∈
K | |x| < 1} its maximal ideal, and by k = O/p its residue field. We say that a polynomial
f(x) ∈ O[x] is primitive if f(x) = a0 + a1x+ · · ·+ anx

n with |f | := max0≤i≤n(|ai|) = 1.

Theorem 4.1 (Hensel’s Lemma). Let f(x) ∈ O[x] be a primitive polynomial and suppose
that f(x) := f(x) (mod p) ∈ k[x] can be written as f(x) = g(x)h(x) with (g(x), h(x)) = 1
in k[x]. Then there exist primitive polynomials g(x), h(x) ∈ O[x] such that f(x) = g(x)h(x),
g(x) = g(x) (mod p), h(x) = h(x) (mod p), and deg g = deg g.

Proof. Put d := deg f , m := deg g. Then we have d −m ≥ deg h. (Note that we only have
deg f ≤ d as some of the coefficients in f(x) might reduce to zero modulo p.) At first we lift
g and h arbitrarily by choosing g0, h0 ∈ O[x] such that

g = g0 (mod p) , h = h0 (mod p)

and deg g0 = deg g, deg h0 = deg h ≤ d−m. Since we have (g, h) = 1, there exist polynomials
a(x), b(x) ∈ O[x] with a(x)g0(x) + b(x)h0(x) ≡ 1 (mod p). So all the coefficients of both
f(x) − g0(x)h0(x) and a(x)g0(x) + b(x)h0(x) − 1 are in the maximal ideal p. Let π be the
coefficient with biggest absolute value in these polynomials (in particular, we have |π| < 1).
We are going to construct g and h in the form

g(x) = g0(x) + πp1(x) + · · ·+ πnpn(x) + . . .

h(x) = h0(x) + πq1(x) + · · ·+ πnqn(x) + . . .

such that deg pi < m and deg qi ≤ d −m. We construct these polynomials inductively. Let
n ≥ 1 and assume we have constructed

gn−1(x) = g0(x) + πp1(x) + · · ·+ πn−1pn−1(x)

hn−1(x) = h0(x) + πq1(x) + · · ·+ πn−1qn−1(x)

such that |f − gn−1hn−1| ≤ |π|n. Put fn(x) := f(x)−gn−1(x)hn−1(x)
πn ∈ O[x]. We define pn(x) to

be the residue in the Euclidean division of b(x)fn−1(x) by g0(x), ie. we have b(x)fn−1(x) =
Qn(x)g0(x)+ pn(x) with some Qn ∈ O[x] and deg pn < deg g0 = m. Note that one can indeed
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take the euclidean division as the leading coefficient of g0(x) does not lie in p hence it is
invertible in O. Now we define qn(x) ∈ O[x] to be the polynomial we obtain by ommiting
all the nonzero coefficients of h0(x)Qn(x) + a(x)fn(x) with valuation ≤ |π| so that we have
|qn − h0Qn − afn| ≤ |π|. On the other hand, we have

h0pn + g0(h0Qn + afn) = (h0b+ g0a)fn ≡ fn (mod π) ,

so deg qn ≤ deg fn − deg g0 ≤ d −m as we clearly have deg(h0pn) ≤ d. Moreover, if we put
gn = gn−1 + πnpn and hn = hn−1 + πnhn then we compute

f − gnhn = f − gn−1hn−1 − πn(gn−1qn + hn−1pn)− π2npnqn ≡
≡ πn(fn − gn−1qn − hn−1bfn + hn−1Qng0) ≡

≡ πn(fn − q0h0Qn − g0afn − h0bfn + h0Qng0) ≡ 0 (mod πn+1)

as we have gn−1 ≡ g0 (mod π) and hn−1 ≡ h0 (mod π). The result follows noting that
the sums g(x) = g0(x) +

∑∞
i=1 π

ipi(x) and h(x) = h0(x) +
∑∞

i=1 π
iqi(x) both converge to

polynomials by the bounds on the degree. For these polynomials we have f(x) = g(x)h(x).

Corollary 4.2. If f(x) = a0 + a1x + · · · + anx
n ∈ K[x] is irreducible then we have |f | =

max(|a0|, |an|).

Proof. We prove by contradiction and may assume without loss of generality that |f | = 1
(ie. f(x) ∈ O[x] primitive). Let 0 < r < n be the smallest index such that |ai| = 1. Then
f(x) decomposes as xr(ar + · · · + anx

n−r) ≡ f(x) (mod p). We obtain a contradiction using
Hensel’s Lemma.

4.2 Extending valuations

Let K be a complete nonarchimedean field as above. Our goal in this section is to prove
the following

Theorem 4.3. Let L/K be a finite field extension. Then the valuation | · | extends uniquely to
an ultrametric valuation on L. The extension is given by |α| = n

√
|NL/K(α)| for α ∈ L where

n = |L : K| the degree and NL/K(α) is the norm of α, ie. the determinant of the multiplication
by α as a K-linear map L→ L.

Remark. Note that in case of the archimedean field R the extension of | · |∞ to C is indeed
given by |α|∞ =

√
|NC/R(α)|∞ =

√
|α · α|.

Proof. Let us show the uniqueness first assuming that n
√
|NL/K(·)| is a nonarchimedean abso-

lute value. Suppose we have another extension | · |′ to L. Denote by OL = {α ∈ L | |α| ≤ 1}
and by O′L = {α ∈ L | |α|′ ≤ 1} the rings of integers with respect to the two absolute
values and by pL = {α ∈ L | |α| < 1} and by p′L = {α ∈ L | |α|′ < 1} the maximal ideals.
Assume that α lies in OL \ O′L and let f(x) = xd + ad−1x

d−1 + · · ·+ a0 be α’s minimal poly-
nomial. Note that the norm NL/K(α) is a power of a0 (upto sign). Since α ∈ OL, we have
|NL/K(α)| ≤ 1 therefore we also have |a0| ≤ 1. By Corollary 4.2 we deduce that ai is in OK
for all 0 ≤ i ≤ d − 1. On the other hand, α /∈ O′L whence |α|′ > 1 and |1/α|′ < 1. This
means that 1 = |1|′ = | − ad−1α−1 − · · · − a0α−d|′ < 1 by the ultrametric inequality. This is
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a condradiction, so we obtain OL ⊆ O′L. Moreover, p′L ∩ OL is a prime ideal in OL therefore
it equals pL. Hence we have pL ⊆ p′L. All in all we obtain |α| ≤ 1⇒ |α|′ ≤ 1 (by OL ⊆ O′L)
and also |α| > 1⇒ |1/α| < 1⇒ |1/α|′ < 1⇒ |α|′ > 1 (by pL ⊆ p′L) showing that | · | and | · |′
are equivalent.

So it remains to show that α 7→ |α| = n
√
|NL/K(α)| is indeed a nonarchimedean valuation

on L. Axioms (1) and (2) are obviously satisfied, so we only need to check (3′). Choose
α, β ∈ L and assume (as we may) that |β| ≤ |α| ≤ 1. So the statement of (3′) means that
we also have |α + β| ≤ 1, in other words we are reduced to proving that OL = {α ∈ L |
NL/K(α) ∈ OK} is a subring (in particular, closed under addition) in L. By Corollary 4.2 OL
is exactly the set of those elements in L whose monic minimal polynomial has coefficients in
OK , ie. the integral closure of OK in L which is known to be a subring (this is the way one
proves that the algebraic integers form a ring). Since the proof is simple, we include it here:

Lemma 4.4. Let B be an integral domain, A ≤ B be a subdomain, and b1, . . . , bk ∈ B
arbitrary. The elements bi (1 ≤ i ≤ k) all have monic minimal polynomials over A (ie. they
are integral over A) if and only if the subring A[b1, . . . , bk] ≤ B generated by b1, . . . , bk over
A is finitely generated as a module over A.

Remark. Note that being finitely generated as a subring is much weaker than being finitely
generated as a module over A. In the former we may multiply the generators together but in
the latter we can only multiply the generators by constants in A.

The proof of the Lemma: ⇒: Induction on k. The case k = 0 is trivial. Now by induction,
the ring R = A[b1, . . . , bk−1] is finitely generated as a module over A, say by the generators
x1, . . . , xt. We are going to show that the set {xjbik | 1 ≤ j ≤ t, 0 ≤ i ≤ d − 1} generate
A[b1, . . . , bk] as a module over A where d denotes the degree of the minimal polynomial
f(x) = xd+ad−1x

d−1+· · ·+a0 ∈ A[x] of bk over A. Indeed, any element in A[b1, . . . , bk] = R[bk]
can be written as a polynomial in bk with coefficients in R. The coefficients can be written
as an A-linear combination of x1, . . . , xt and the polynomial can be reduced to having degree
< d by euclidean division by f as f(bk) = 0 and f is monic.
⇐: Suppose that A[b1, . . . , bk] is finitely generated as a module over A, say by generators

x1, . . . xt. Then we may take the matrix Mi ∈ At×t of the multiplication by bi in the basis
x1, . . . , xt. Note that the matrixMi is not unique as we may have “relations” between the xj’s.
However, it certainly exists since the x1, . . . , xt form a generating system. By the theorem of
Cayley and Hamilton, bi is the root of its own characteristic polynomial which is monic and
has coefficients in A. Therefore the minimal polynomial of bi over A exists and is also monic
as it divides the characteristic polynomial.

4.3 Newton polygons

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Qp[x] be a polynomial. The Newton polygon of
f is the (boundary of the) lower convex hull of the points

{(−n,− logp |an|), . . . , (−i,− logp |ai|), . . . , (0,− logp |a0|)} ⊂ Z2 ⊂ R2

on the euclidean plane. That is, take the intersection of all the closed half-planes containing
these points and lying above some nonvertical line. We say that the multiplicity of the slope
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a/b ∈ Q is m if we have a segment in the Newton polygon with slope a/b and horizontal
width m. The polynomial f has exactly n slopes if counted with multiplicities.

Example 4.5. The Newton polygon of the polynomial x3+px2+px+p3 has vertices (−3, 0), (−1, 1),
and (0, 3). It has slopes 1/2 with multiplicity 2 and 2 with multiplicity 1.

The additive valuation of α ∈ Qp is by definition − logp |α|p. Note that α belongs to a
finite extension K of Qp and we extended | · |p to K in the previous section.

Theorem 4.6. The multiset of slopes of the Newton polygon of f equals the multiset of the
additive valuations of the roots of f in Qp.

Proof. We introduce the ρ-norm (Gauss-norm) on Qp[x] for each real number ρ > 0 by putting
‖anxn + an−1x

n−1 + · · · + a0‖ρ := max1≤i≤n(|ai|pρi). The width of f under the ρ-norm is the
difference between the maximum and minimum values of i for which maxi(|ai|pρi) is achieved.
Note that the multiplicity of the slope a/b in the Newton polygon of f is nothing else but the
width of f under the ρ-norm with ρ = p−a/b. The statement follows from the following

Lemma 4.7. For f(x), g(x) ∈ Qp[x] and ρ > 0 we have ‖fg‖ρ = ‖f‖ρ‖g‖ρ (ie. ‖ · ‖ρ is
multiplicative). Moreover, the width of fg under the ρ-norm equals the sum of the widths of
f and g.

Proof. Denote by mf and Mf the minimum and maximum values of i for which maxi(|ai|pρi)
is achieved. The integers mg, mfg, Mg, and Mfg are defined similarly. If we write g(x) =
bkx

k + · · ·+ b0 then we have

f(x)g(x) =
∑
i

(∑
j+l=i

ajbl

)
xi .

In the sum
∑

j+l=i ajbl each summand has absolute value at most ‖f‖ρ‖g‖ρρ−i with equality
if and only if |aj| = ‖f‖ρρ−j and |bl| = ‖f‖ρρ−l. This cannot occur for i < mf +mg and for
i = mf + mg it occurs only for j = mf and l = mg. So we have mfg = mf + mg and the
multiplicativity of ‖ · ‖ρ also follows. The equality Mfg =Mf +Mg is deduced the same way.
Therefore the width is indeed additive.

Corollary 4.8. If the Newton polygon of a polynomial f(x) ∈ Q[x] wrt. some prime p (ie.
considered as a polynomial in Qp[x]) is just one line with the only lattice points at the two
ends then f(x) is irreducible.

Newton polygons have many more modern applications, too, e.g. in the theory of p-adic
differential equations. To read more have a look at [6].

4.4 Exercises

Exercise 4.3. Show that all the p − 1st roots of unity are contained in Qp. Hint: Try and
factor the polynomial xp−1 − 1 using Hensel’s Lemma.

Problem 4.4. Compute |1 − εm|p for any positive integer m and prime p where εm is a
primitive mth root of unity. Hint: At first do it if (m, p) = 1 or m is a power of p. For this
compute the Newton polygon of a suitable polynomial having 1− εm as a root. Finally, write
εm = εphεj where (j, p) = 1 and 1− εm = (1− εph) + εph(1− εj).
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Exercise 4.5. Give more details of the proof of Theorem 4.6. Verify that the width of f
under the ρ-norm is equal to the multplicity of the slope − logp ρ in the Newton polygon of
f . What is the Newton polygon of the linear polynomial x− α?

Exercise 4.6. Give a proof of Corollary 4.8.

Problem 4.7. Show that if Newton polygon of the polynomial f(x) ∈ Qp has two different
slopes then f cannot be irreducible. Hint: Use the uniqueness of the extension of the absolute
value to finite extensions of Qp in order to show that the Galois group Gal(K/Qp) acts on
any Galois-extension K via isometries. If all the roots of f are Galois-conjugates then they
have the same absolute value.

5 Applications, research directions, and further reading
If you do not intend to become a number theorist, you may ask why learn the p-adics as

they are so different from the “real world”. This is, in fact, not quite true. However, let us
discuss the most important applications of p-adic methods in Number Theory first, together
with a view what the main research directions are. The list below does not intend to be
exhaustive—it certainly reflects the interest and the (limited) knowledge of the author.

5.1 Hasse’s local-global principle

The most important application of the p-adics numbers are through the so-called local-
global (or Hasse) principle. Roughly speaking the idea is that—as you may have noticed—it
is easier to decide whether or not polynomial equations have roots in the fields R and Qp for
varying p than deciding it over Q. Clearly, if there are no roots in Qp for some p or in R then
there can be no roots in Q either. The question is up to what extent is the converse true.
Unfortunately, this is not always the case. For example, the equation 3x3+4y3+5z3 = 0 has
a solution in R and Qp for all primes p, but not in Q. However, for homogeneous polynomials
of degree 2 the local global principle holds. This is the theorem of Hasse and Minkowski (for
a detailed and elementary proof see the book [12] by Serre).

There exist certain methods how to “measure” the failure of the Hasse principle. For
elliptic curves this is done by the Tate-Shafarevich group which in this case fully accounts
for the failure of the principle. The Tate-Shafarevich conjecture asserts that this group is
always finite over for elliptic curves over finite extensions of Q. This is one of the most
important open problems in arithmetic geometry. The conjecture of Birch and Swinnerton-
Dyer (a millenium prize problem) would imply this and the conjecture has been tested for
many numerical examples. There is also some very important theoretical evidence in favour
of this conjecture—for instance, the known cases of the BSD conjecture. To read more about
elliptic curves Silverman’s book [13] is an excellent introduction.

5.2 Langlands programme

L-functions play a very important role in Number Theory. These are certain generaliz-
ations of the Riemann ζ-function ζ(s) =

∑∞
n=1 1/n

s (Re(s) > 1). For example, the proof
of Dirichlet’s Theorem on primes in arithmetic progression is proven using L-functions. The
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Riemann ζ-function itself (especially the set of its roots) is very much related to the distribu-
tion of primes in Z. Further, according to the conjecture of Birch and Swinnerton-Dyer, the
L-function of an elliptic curve should vanish to the order of the rank of the curve.

L-functions play the role of the connection between Galois representations and auto-
morphic forms. One can attach L-functions to both types of objects. However, while on
the Galois-side it is very natural to write the L-function as Euler product over the primes (for
example, we have ζ(s) =

∏
p prime

1
1−p−s ), this is not so obvious on the automorphic side. On

the other hand, the functional equation and the analytic continuation of L-functions to the
whole complex plane—note that a priori ζ(s) is only defined if Re(s) > 1—is quite standard
(well, this is Tate’s thesis, in fact), but not at all on the Galois side. In fact, the only method
known to show the analytic continuation is via modularity, ie. showing that the L-function in
question is the L-function of some automorphic form. The Langlands program is the philo-
sophy that one should try to match Galois-representations to automorphic forms having the
same L-function. There are not too many known results in this direction. The case when the
Galois representation is 1-dimensional, is completely understood via class field theory. The
case of Galois-representations coming from elliptic curves was settled by Wiles (and Taylor)
when proving Fermat’s Last Theorem. More recently, there are other modularity results using
Serre’s conjectures and the p-adic Langlands correspondence for GL2(Qp) by Colmez. So one
can—rather surprisingly—use p-adic methods to prove the analytic continuation of certain
complex functions!

If you are interested in this, you should start out by reading class field theory first for
which I recommend the books [11] and [9].

5.3 Algebraic geometry

It should be obvious by now that the p-adic numbers are useful when trying to find (or
proving that there are no) rational points on algebraic varieties. However, there are several
other applications of the p-adics in algebraic geometry. For instance, it is sometimes useful
to complete the local ring of a variety at a point, as complete discrete valuation rings have
better properties than those that are not complete. Another very important application is
in étale cohomology. The étale cohomology is a cohomology theory in algebraic geometry
that has better properties if the coefficients are taken from a finite ring. However, for certain
applications, it is necessary to have coefficients with characteristic zero. Therefore one takes
the projective limit with coefficients in Z/pnZ to obtain coefficients in Zp. If you want to
learn more on algebraic geometry the best reference is [5].

5.4 Group theory

Profinite groups are inverse limits of finite groups. They are naturally compact topological
spaces in the inverse limit topology of the finite sets equipped with the discrete topology. For
example infinite Galois groups are profinite, but profinite groups also show up as automorph-
ism groups of certain (infinite) rooted trees. The additive group Zp ∼= lim←−Z/pnZ is a profinite
group, moreover, it is a pro-p group, ie. an inverse limit of finite p-groups. Moreover, it is the
unique (upto isomorphism) infinite pro-p group topologically generated by a single element.
A pro-p group G is said to have finite rank if all its closed subgroups can be topologically
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generated by a bounded number of elements. All pro-p groups of finite rank are closed sub-
groups of GLn(Zp) for n large enough. If you wish to learn more on pro-p groups, the bible
is the book [3].

Another application of the p-adic numbers is in modular representation theory of finite
groups. This is because the natural objects to which one can lift up representations in char-
acteristic p to characteristic 0 are complete local integral domains, such as Zp. For more
information on modular representation theory see the book [10].

5.5 Dynamical systems

The main result of the groundbreaking paper [1] is the following. We say that a complex
number a ∈ C is preperiodic for the polynomial f(z) ∈ C[z] if the set

{a, f(a), f(f(a)), . . . , f(. . . (f(a)) . . . ), . . . }

is finite. Fix a positive integer d > 1 and complex numbers a, b ∈ C. The set of parameters
c ∈ C such that both a and b are preperiodic for f(z) = zd+ c is infinite if and only if ad = bd.
Note that the statement is completely elementary and only concerns complex polynomials.
However, the proof requires non-trivial methods in non-archimedean analytic geometry (in
the sense of Berkovich [2]).

5.6 Algebraic topology

The (still open) Hilbert-Smith conjecture states that if a locally compact group G acts
effectively (ie. faithfully) on a topological manifold M then G is a Lie-group. Because of
known structural results on locally compact groups the conjecture can be reduced to the case
G ∼= Zp the additive group of the p-adic integers. In other words it would be enough to show
that Zp cannot act faithfully on a topological manifold M .

The ring Zp of p-adic integers is one of the easiest examples of a complete discrete valuation
ring (the other one being k[[t]], k field). These are very important in the theory of formal
groups which not only show up in algebraic geometry and number theory, but also in algebraic
topology. The book [8] is a good introduction to the theory of formal groups.

5.7 Physics

The geometry of space-time at small distances seems to be non-archimedean—at least
according to some physisists. For instance, the p-adic numbers show up in quantum mechanics,
quantum field theory, and string theory, too. I am not an expert on this, so if you are
interested, you should consult the book [14] for a start.
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