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These are the notes of a minicourse given by the author at ELTE in June 2022. Nothing in these
notes are original or new. The text has been influenced by the books of Gouvea and Serre [3, 4]. The
goal of the course is to explain the local–global principle in arithmetic through the proof of the Theorem
of Hasse and Minkowski.

1 Introduction
Why do diophantine equations have no solutions? We start by the following trivial examples.

Example 1. Consider the equation x2 + y2 = −1 in Z (or in Q). It has no solutions because it has no
solutions over R either (which contains Z ⊂ Q).

Example 2. Consider the equation x2− 3y2 = −1 in Z. It has no solutions since there are no solutions
modulo 3 either (one could also argue mod 4).

I claim that the above 2 types of obstruction have the same nature! To see this at first investigate
whether Example 2 has solutions in Q. Finding a common denominator write x = a

c
and y = b

c
with

(a, b, c) = 1 to obtain a2 − 3b2 = −c2. We may argue the same way: Since −1 is not a square mod 3,
we must have 3 | c and 3 | a whence 9 | a2 + c2 = 3b2 deducing 3 | b, as well—contradiction. In fact,
we have just shown that this equation has no solutions in the field Q3 of 3-adic numbers. In order to
motivate what those are, let us start with the analogy between arithmetic and Z and arithmetic in C[t].

ring Z C[t]
UFD X X
PID X X

maximal ideals primes {(t− c) | c ∈ C}
local expansion a0 + a1p+ · · ·+ anp

n a0 + a1(t− c) + · · ·+ an(t− c)n
only for nonnegative integers any polynomial

(ai ∈ {0, 1, . . . , p− 1}) (ai ∈ C)
fraction field Q C(t) = {f

g
| f, g ∈ C[t], g 6= 0}

local expansion of fractions ???
∑∞

n=−N an(t− c)n

Note that the local expansion of fractions f
g
at c converges in a punctured neighbourhood of c since

“t is close to c”, ie. “(t− c) is close to 0” ⇒ (t− c)n → 0 as n→ +∞. Replacing (t− c) with the prime
p ∈ Z makes us want to have pn → 0 in some metric.
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Definition. For a nonzero rational number a1
b1
pk with p - a1, b1, k ∈ Z denote by |a1

b1
pk|p := p−k the

p-adic absolute value. In other words we have |α|p = p−vp(α) where vp denotes the exponent of p in the
prime decomposition of a number. Further, put |0|p := 0.

Lemma 1.1. For all x, y ∈ Q we have

1. |x|p = 0⇔ x = 0.

2. |xy|p = |x|p|y|p.

3. |x+ y|p ≤ max(|x|p, |y|p)(≤ |x|p + |y|p).

Proof. Left to the reader.

The third inequality above is called the ultrametric inequality. Absolute values are functions |·| : K →
R≥0 satisfying the above first 2 conditions and the triangle inequality (third condition with just ≤ |x|+|y|
on the right). An absolute value is called nonarchimedean if the ultrametric inequality is also satisfied,
otherwise we call it archimedean. We call two absolute values | · | and | · |′ equivalent if there exists a
real number s > 0 such that |x|s = |x|′ for all x ∈ K. Fact: two absolute values on K are equivalent if
and only if they induce the same topology on K.

Theorem 1.2 (Ostrowski). Any absolute value on Q is equivalent to one of the following (pairwise
inequivalent) absolute values:

1. The trivial absolute value |x|1 =

{
1 if x 6= 0

0 if x = 0
.

2. The usual archimedean absolute value | · |∞.

3. The p-adic absolute value | · |p for some prime p.

Definition. The field Qp of p-adic numbers is the completion of Q with respect to | · |p.

Here by completion we mean the equivalence classes of Cauchy sequences. Two Cauchy sequences
are equivalent if their merge is also a Cauchy sequence.

We recall some basic facts about | · |p and Qp:

1. If (xn)n≥1 ⊂ Q is Cauchy in | · |p then |xn|p stabilizes or |xn|p → 0. Indeed, the range of | · |p on
Q is pZ ∪ {0} which has no limit point other than 0. In particular, the range of | · |p on Qp is the
same set as pZ ∪ {0} is closed in R.

2. Elements of Qp have a unique p-adic expansion of the form

0 6= x =
∞∑

n=−N

anp
n an ∈ {0, 1, . . . , p− 1}, a−N 6= 0 .

3. One could in fact work with any other set of representatives of Z/(p) = Fp instead of {0, 1, . . . , p−
1} ⊂ Z.

4. The closed unit disk

Zp := {α ∈ Qp | |α|p ≤ 1} = {a0 + a1p+ · · ·+ anp
n + · · · }

is a subring! It is closed under addition due to the ultrametric inequality. Zp is called the ring of
p-adic integers.
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5. We have Zp/(pn) ' Z/(pn). Zp is a complete discrete valuation ring , in particular it has unique
factorization with single prime p.

Example 3. Let p = 5. We compute

35

31
=

2 · 5 + 52

1 + 5 + 52
=

2p+ p2

1 + p+ p2
= 2p+ 4p2 + 3p3 + p4 + 4p5 + · · ·+ 4pn + · · · =

= 2p+ 4p2 + 3p3 + p4 + 3p5
1

1− p
.

Indeed, one has to “carry over” when multiplying or adding. Further, we have

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · · .

In particular, there is a p-adic expansion of any not necessarily positive integer.

2 Solving equations in Zp (or in Qp)
Lemma 2.1. Let f1, . . . , fk ∈ Zp[x1, . . . , xm] be polynomials. The following are equivalent:

(1) f1, . . . , fk have a common root in Zmp ;

(2) f1, . . . , fk have a common root in (Z/(pn))m for all n ≥ 1.

Sketch of proof. (1)⇒ (2): We may reduce the common root mod pn and use the fact Zp/(pn) ' Z/(pn).
(2)⇒ (1): One may argue using the fact that Zp is a compact topological space therefore so is Zmp .

Alternatively, one could use König’s lemma: put An ⊆ Z/(pn) the set of mod pn solutions. These are
finite sets and there is a reduction map An+1 → An for all n ≥ 1. Further, by assumption An 6= ∅ for
any n ≥ 1. Assume all the elements of A1 can only be lifted to some finite level. Since A1 is finite, there
is a maximum of these levels, say n. However, An+1 is nonempty, and any element in An+1 reduces to an
element in A1 contradicting that n was the maximum level of all the lifts of elements of A1. Therefore
the subset Bj ⊆ Aj consisting of elements of Aj that can be lifted arbitrarily is nonempty for any j ≥ 1.
Any element in B1 lifts to an element in B2 which lifts to an element B3 and so on, so in the limit we
obtain a p-adic common root of f1, . . . , fk as a sequence of compatible elements in An (n ≥ 1).

Proposition 2.2. Let f1, . . . , fk ∈ Zp[x1, . . . , xm] be homogeneous polynomials. Then the following are
equivalent:

(1) f1, . . . , fk have a nontrivial common root in Qm
p ;

(2) f1, . . . , fk have a nontrivial common root in Zmp ;

(3) f1, . . . , fk have a primitive common root in (Z/(pn))m for all n ≥ 1.

Here by trivial root we mean (0, . . . , 0) and by primitive root we mean a tuple (α1, . . . , αm) with greatest
common divisor gcd(α1, . . . , αm) = 1.

Proof. (1) and (2) are equivalent since we may multiply any root in Qm
p by the least common multiple of

the denominators of the coordinates which is still a solution as f1, . . . , fk are homogeneous. In particular,
there is a nontrivial solution if and only if there is a primitive one. (2) and (3) are equivalent by Lemma
2.1.
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Lemma 2.3 (Hensel). Let f(x) ∈ Zp[x], n, k ∈ Z with 0 ≤ 2k < n. Assume f(α) ≡ 0 (mod pn) and
vp(f

′(α)) = k. Then there is a β ∈ Zp such that f(β) ≡ 0 (mod pn+1), vp(f ′(β)) = k, and β ≡ α
(mod pn−k).

Proof. We look for β in the form β = α + pn−kz and compute

f(β) = f(α + pn−kz) = f(α) + pn−kzf ′(α) + (pn−kz)2(· · · ) ≡ f(α) + pn−kzf ′(α) (mod pn+1)

since pn+1 | p2n−2k. On the other hand, vp(pn−kf ′(α)) = n−k+k = n ≤ vp(f(α)) whence z := − f(α)
pn−kf ′(α)

lies in Zp.

Theorem 2.4. Let f ∈ Zp[x1, . . . , xm], α = (α1, . . . , αm) ∈ Zmp , n, k ∈ Z with 0 ≤ 2k < n. Assume

there exists an index j ∈ {1, . . . ,m} such that f(α) ≡ 0 (mod pn) and vp
(
∂f
∂xj

(α)
)
= k. Then there

exists a β ∈ Zmp such that f(β) = 0 and β ≡ α (mod pn−k).

Proof. We apply Lemma 2.3 repetitively on the 1-variable polynomial f(α1, . . . , xj, . . . , αm) in order to
find β = (β1, . . . , βm) such that βi = αi for all j 6= i ∈ {1, . . . ,m}.

Corollary 2.5. The polynomial xp−1 − 1 splits completely over Zp. In particular, the group Z×p splits
as a direct product Z×p = µp−1 × (1 + pZp) (where µp−1 denotes the group of p− 1th roots of unity).

Proof. The polynomial xp−1 − 1 has p − 1 distinct roots in Fp = Z/(p) which all lift to Zp by Lemma
2.3 (n = 1, k = 0: the value of the derivative (xp−1 − 1)′ = (p− 1)xp−2 is not divisible by p at the roots
mod p).

Proposition 2.6. Assume p 6= 2. Then any u ∈ 1 + pZp has a square root in Zp.

Proof. The polynomial x2− u has two distinct roots mod p since the derivative (x2− u)′ = 2x does not
vanish mod p at ±1, so we may apply Lemma 2.3 with n = 1, k = 0.

Proposition 2.7. Assume p = 2. Then any u ∈ 1 + 8Zp has a square root in Z2.

Proof. The polynomial x2−u has the root 1mod 8 = 23 and the valuation of the derivative (x2−u)′ = 2x
at 1 equals v2(2) = 1, so we may apply Lemma 2.3 with n = 3, k = 1.

Corollary 2.8. We have

Q×p /(Q×p )2 =

{
〈p, u〉 = {1, p, u, pu} ' C2 × C2 if p 6= 2

〈2, 5,−1〉 = {±1,±2,±5,±10} ∼= C2 × C2 × C2 if p = 2 .

Here u denotes a quadratic nonresidue mod p, ie.
(
u
p

)
= −1.

Proof. The multiplicative group decomposes as a direct product Q×p = pZ×Zp× ' pZ×µp−1×(1+pZp).
The result follows from Propositions 2.6 and 2.7 noting (Z/(8))× = 〈−1, 5〉.

3 Statement and application of Theorem of Hasse andMinkowski
It is nice to have some obstructions to the existence of rational solutions of diophantine equations,

but how does one guarantee the existence of such? Hasse’s local–global principle is that whenever the
polynomials f1, . . . , fk ∈ Q[x1, . . . , xm] have a common (nontrivial) root in R and in Qp for all primes p
then there should be a common (nontrvial) root in Q, too (if the polynomials are homogeneous). How-
ever, the following famous counterexample due to Ernst Selmer (1951) shows that this is, unfortunately,
not always the case:
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Example 4. The equation 3x3 +4y3 +5z3 has nontrivial solutions in R and in Qp for all primes p, but
no nontrivial solutions in Q.

Hint of proof. The existence of real and p-adic solutions is not that hard, one first finds solutions mod
p and lifts them using Hensel’s lemma (one has to distinguish the cases of p = 3, 5). The proof of
nonexistence of rational solutions requires some algebraic number theory (arithmetic in the ring Z[ 3

√
6])

or elliptic curves. See the notes of Keith Conrad [2] and the book of Cassels [1] for details.

However, for quadratic forms we have the following result of Hasse and Minkowski from the 1920s:

Theorem 3.1 (Hasse–Minkowski). Assume f ∈ Q[x1, . . . , xm] is homogeneous of degree 2. The the
following are equivalent:

(1) there exists an α 6= 0 in Qm such that f(α) = 0;

(2) there exists an α(∞) 6= 0 in Rm such that f(α(∞)) = 0 and for all primes p there exists an α(p) 6= 0
in Qm

p such that f(α(p)) = 0.

We postpone the proof of Theorem 3.1 until section 6. Let us see some application first to the
classical problem of sums of three squares.

Theorem 3.2. A nonnegative integer n can be represented by a sum of three squares if and only if n is
not of the form 4a(8k + 7) (a, k ∈ Z≥0).

Proof. At first we show that x2 + y2 + z2 = 4a(8k + 7) has no solutions in Z. If a ≥ 1 then arguing
mod 4 we find that all x, y, z must be even. Therefore we may divide the equation by 4 to represent
4a−1(8k + 7) as a sum of three squares. Repeating the process we may assume a = 0. However, squares
have residues 0, 1, or 4 mod 8, so three squares cannot add up to 8k + 7.

Step 1: For the converse, we first show that if n 6= 4a(8k + 7) then n can be written as a sum of the
squares of three rational numbers. Consider the quadratic form x2 + y2 + z2 − nu2. We show that it
has a local solution at each prime and at infinity. Since n > 0, there is a nontrivial root in R. Next we
treat p = 2:

Lemma 3.3. Assume n 6≡ 0, 4, 7 (mod 8), k ≥ 3. Then there exist x, y, z ∈ Z such that x2+y2+z2 ≡ n
(mod 2k).

Proof. Using Proposition 2.7 we may assume k = 3. We check 1 = 02 + 02 + 12, 2 = 02 + 12 + 12,
3 = 12 + 12 + 12, 5 = 02 + 12 + 22, 6 = 12 + 12 + 22.

By Lemma 3.3 the form x2+y2+z2−nu2 has a nontrivial zero in Q2: whenever 4 | n we may replace
u = u1

2
and once 4 - n we will have n 6≡ 0, 4, 7 (mod 8) by our assumption that n 6= 4a(8k + 7).

Now we turn to the case p > 2.

Lemma 3.4. Assume p > 2 and k ≥ 1. Then the congruence x2 + y2 + z2 ≡ n (mod pk) is solvable for
all n ∈ Z.

Proof. We take z = 1 if p | n and z = 0 if p - n. So it suffices to show that whenever p - c then the
congruence x2 + y2 ≡ c (mod pk) has a solution (we take c = n or n− 1). For the existence of solutions
mod p note that the sets {c − y2 | y ∈ Fp} (resp. {x2 | x ∈ Fp}) have cardinality p+1

2
, so they cannot

be disjoint as Fp has cardinality p < p+1
2

+ p+1
2
. By the multivariate Hensel’s Lemma (Thm. 2.4) the

mod p solution can be lifted to mod pk for all k ≥ 1 since whenever x20 + y20 ≡ c 6≡ 0 (mod p), we have
(x0, y0) 6≡ (0, 0) (mod p) so at least one of the partial derivatives of x2 + y2 − c will not vanish mod p
at the point (x0, y0).
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By Theorem 3.1 there exists a vector (0, 0, 0, 0) 6= (x0, y0, z0, u0) ∈ Q4 such that x20 + y20 + z20 = nu20.
However, u0 cannot be 0 as x20 + y20 + z20 can only be 0 for x0 = y0 = z0 = 0. So putting x1 = x0/u0,
y1 = y0/u0, z1 = z0/u0 we find n = x21 + y21 + z21 .

Step 2: We show that whenever we have rational solutions of x2 + y2 + z2 = n, we also have integral
solutions. For this we need the following Lemma in elementary geometry due to Cassels and Davenport.

Lemma 3.5. Assume that we have a rational point P1 = (x1, y1, z1) ∈ Q3 in the Euclidean 3-space with
x21 + y21 + z21 = n ∈ Z such that the common denominator of (x1, y1, z1) is t1 > 1. Pick an integral vector
P2 := (x2, y2, z2) ∈ Z3 by rounding x1, y1, z1, ie. we have |x1− x2|∞, |y1− y2|∞, |z1− z2|∞ ≤ 1

2
. Then the

line connecting P1 and P2 intersects the sphere around the origin of radius
√
n in another rational point

P3 = (x3, y3, z3) ∈ Q3 such that t1‖P1−P2‖2(x3, y3, z3) = t1((x1−x2)2+(y1−y2)2+(z1−z2)2)(x3, y3, z3)
lies in Z3.

Proof. Left to the reader. See Lemma B in the Appendix of Chapter I in [4] for a more general statement
and proof.

Note that t1‖P1 − P2‖2 ≤ t1(
1
4
+ 1

4
+ 1

4
) < t1 is an integer since we have

t1‖P1 − P2‖2 = t1〈P1 − P2, P1 − P2〉 = t1‖P1‖2 + t1‖P2‖2 − 2t1〈P1, P2〉 = t1n+ t1‖P2‖2 − 2〈t1P1, P2〉

and t1P1, P2 ∈ Z3. Iterating the above Lemma we end up with an integral point on the sphere of radius√
n as desired.

4 Hilbert symbol and its local properties
In order to uniformize notation we put Q∞ := R and denote by P ⊂ N the set of primes such that

v (or `) will often run on P ∪ {∞}. However, p will still denote a (finite) prime.

Definition. Let K be a field (of characteristic different from 2, but for the minicourse always of char-
acteristic 0) and a, b ∈ K×. The Hilber symbol (a, b)K ∈ {±1} is defined to be 1 if the quadratic form
z2− ax2− by2 has a nontrivial root in K and to be −1 otherwise. If the field K is understood from the
context we often omit the subscript K. Further, in case K = Qv (v ∈ P ∪ {∞}) we just put v in the
subscript instead of Qv.

Note that (a, b)K = 1 if and only if the quaternion algebra defined with constants a, b splits over K.
We do not need this fact in the sequel, so do not worry if you do not know what a quaternion algebra
is.

Proposition 4.1. Let a, b ∈ K×. We have (a, b) = 1 if and only if a is a norm of an element in K(
√
b)

if and only if b is a norm of an element in K(
√
a).

Proof. If b = c2 then K(
√
b) = K whence any a ∈ K× is a norm. Consequently, x = 0, y = 1, z = c is a

nontrivial root. Assume now that b is not a square. Then x0 = 0 is not possible for a nontrivial solution
z20 = ax20 + by21. Therefore a = ( z0

x0
)2 − b(y0

z0
)2 = N( z0

x0
+
√
by0
z0
). The converse follows similarly.

The Hilbert symbol has the following basic properties regardless of the field K:

Proposition 4.2. For all a, b, c ∈ K× we have

(i) (a, b) = (b, a), (a, bc2) = (a, b);

(ii) (1, a) = (a,−a) = (a, 1− a) = 1;
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(iii) (a, bc) = (a, b)(a, c) if (a, c) = 1.

Proof. (i) and (ii) are obvious from the definition. For (iii) use Proposition 4.1 and note that the norm
is multiplicative.

So far K could have been an arbitrary field of characteristic different from 2. However, in case
K = Qv (v ∈ P ∪ {∞}) we can say more: the hilbert symbol (a, b)v is bilinear, ie. property (iii) holds
without the assumption (a, c)v = 1. In case v = ∞ one can see this directly: we have (a, b)∞ = −1 if
and only if both a and b are negative therefore we indeed have (a, bc)∞ = (a, b)∞(a, c)∞. The case of
finite primes is more involved, we need a couple of Lemmas.

Lemma 4.3. Assume p 6= 2 and a, b, c ∈ Z×p . Then the equation ax2 + by2 + cz2 = 0 has a nontrivial
(primitive) solution in Zp (hence in Qp). In particular, we have (a, b)p = 1 if a, b ∈ Z×p .

Proof. This is similar to Lemma 3.4, so we leave the details to the reader. We may take z = 1.

Lemma 4.4. Assume p 6= 2 and u ∈ Zp is not a square mod p, ie.
(
u
p

)
= −1. Then we have

(u, p)p = −1.

Proof. Assume we have z2 − ux2 − py2 = 0 for some x, y, z ∈ Qp not all 0. By rescaling we may assume
x, y, z ∈ Zp not all divisible by p. Looking at the equation mod p we find that p must divide x since(
u
p

)
= −1.

Theorem 4.5. Assume p 6= 2 and put a = pαs, b = pβt. Then we have the following formula for the
Hilbert symbol at p:

(a, b)p = (−1)αβ
p−1
2

(
s

p

)β (
t

p

)α
.

In particular, (·, ·)p : Q×p /(Q×p )2 ×Q×p /(Q×p )2 → {±1} is bilinear nondegenerate pairing.

Proof. By Proposition 4.2(i) and Corollary 2.8 we are reduced to a finite computation of Hilbert sym-
bols (among 1, u, p, up). The statement follows from Lemmas 4.3 and 4.4 by a computation using the
properties in Proposition 4.2.

Theorem 4.6. Let a = 2αs, b = 2βt ∈ Q2 with s, t ∈ Z×2 . Then we have

(a, b)2 = (−1)ε(s)ε(t)+αω(t)+βω(s)

where ε(s) ≡ s−1
2

(mod 2) and ω(s) ≡ s2−1
8

(mod 2). In particular, (·, ·)2 : Q×2 /(Q×2 )2 × Q×2 /(Q×2 )2 →
{±1} is bilinear and nondegenerate.

Proof. By Corollary 2.8 we only need to check the above identity when a, b ∈ {±1,±2,±5,±10} which
is a tedious, but finite computation that we omit.

5 Global properties of the Hilbert symbol
The goal of this section is to formulate relations between (a, b)p for fixed nonzero rational numbers

a, b and varying p. This is closely related to Gauss’ quadratic reciprocity law. Further, for fixed a ∈ Q
and signs εv ∈ {±1} for v ∈ P ∪ {∞} we would like to give necessary and sufficient conditions on the
existence of b ∈ Q with (a, b)v = εv for all v ∈ P ∪ {∞}. The latter involves the existence of primes in
arithmetic progressions due to Dirichlet.
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Let p 6= q be odd primes. Then by Lemma 4.4 the Hilbert symbol (p, q)p is equal to 1 if and only qis
a square mod p. In other words, we have the identity (p, q)p =

(
q
p

)
. Moreover, by Theorem 4.6 we have

(p, q)2 = (−1)ε(p)ε(q) = (−1) p−1
2
· q−1

2 . By the same argument we also have (−1, p)p = (−1) p−1
2 = (−1, p)2.

Therefore Gauss’ quadratic reciprocity law reads in this language

Theorem 5.1 (quadratic reciprocity law). For odd primes p 6= q we have

(p, q)q =

(
p

q

)
= (−1)

p−1
2
· q−1

2

(
q

p

)
= (p, q)2(p, q)p .

On the other hand, we have

(2, p)p =

(
2

p

)
= (−1)

p2−1
8 = (2, p)2 .

Putting all the above information we deduce

Theorem 5.2 (Hilbert’s reciprocity law). For all a, b ∈ Q× we have

(i) (a, b)p = 1 for all but finitely many primes p;

(ii)
∏

v∈P∪{∞}
(a, b)v = 1.

Proof. Whenever a, b ∈ {−1}∪P , the statement follows from the formulae above for the Hilbert symbol
and the quadratic reciprocity law. For general a, b we deduce the statement from the bilinearity of the
local Hilbert symbols.

Theorem 5.3. Let I be a finite index set and ai ∈ Q× a nonzero rational number for each i ∈ I.
Assume further we are given signs εi,v ∈ {±1} for all i ∈ I and v ∈ P ∪ {∞}. There is an x ∈ Q×
such that (ai, x)v = εi,v for all i ∈ I and v ∈ P ∪ {∞} if and only if the following three conditions are
satisfied:

(1) εi,v = 1 for all but finitely many v ∈ P ∪ {∞}.

(2) We have
∏

v∈P∪{∞} εi,v = 1 for all i ∈ I.

(3) For all v ∈ P ∪ {∞} there exists an element xv ∈ Q×v such that (ai, xv) = εi,v for all i ∈ I.

Proof. The necessity of conditions (1) and (2) follow from Hilbert’s reciprocity law (Thm. 5.2). Further,
if x ∈ Q× is a global solution then one can take xv = x in (3).

For the converse assume we are given ai ∈ Q× and εi,v ∈ {±1} for all i ∈ I and v ∈ P ∪ {∞}
satisfying (1), (2), and (3). We may assume without loss of generality that all ai are squarefree integers
since (aic

2
i , b)v = (ai, b)v for all v ∈ P ∪ {∞} and b, ci ∈ Q×. Put

S := {∞, 2} ∪ {p ∈ P | ∃i ∈ I s.t. p | ai}
T := {v ∈ P ∪ {∞} | ∃i ∈ I s.t. εi,v = −1 .

By our assumptions both S and T are finite subsets of P ∪ {∞}.
Case 1: S ∩ T = ∅. In particular note that ∞ /∈ T as ∞ ∈ S. Put

a :=
∏
`∈T

` and m := 8
∏

p∈S\{2,∞}

p .

By our assumption S ∩ T = ∅ the integers a and m are coprime, so we may use Dirichlet’s theorem to
find a prime q /∈ S ∪ T such that q ≡ a (mod m). We claim that x := aq satisfies (ai, x)v = εi,v for all
i ∈ I and v ∈ P ∪ {∞}. We check this case by case:
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1. v ∈ S. In this case we have εi,v = 1 by the assumption S∩T = ∅. For v =∞ we find (ai, aq)∞ = 1
since aq > 0. For v = p 6= 2 ∈ S we note q ≡ a (mod p) as p | m, so x = aq ≡ a2 (mod p),
ie.
(
x
p

)
= 1 whence (ai, x)p = 1 by Theorem 4.5. Similarly, for v = 2 ∈ S we have x ≡ a2 ≡ 1

(mod 8) showing (x, ai)2 = 1 by Theorem 4.6.

2. v = ` ∈ T . So ` /∈ S, ie. ` 6= ∞, 2 and ai ∈ Z×` for all i ∈ I. Therefore Theorem 4.5 reads in this
case

(ai, b)` =
(ai
`

)v`(b)
∀b ∈ Q×` .

By condition (3) there exists an x` ∈ Q×` such that
(
ai
`

)v`(x`) = (ai, x`)` = εi,` for all i ∈ I.
Moreover, ` ∈ T means there exists an index i ∈ I with εi, ` = −1 showing v`(x`) must be odd.
On the other hand, we have v`(aq) = 1(≡ v`(x`) (mod 2)) as q /∈ T and ` | a, but `2 - a by
construction. So we have

(ai, x)` =
(ai
`

)v`(x)
=
(ai
`

)v`(x`)
= (ai, x`)` = εi,`

for all i ∈ I as desired.

3. ` /∈ S ∪ T ∪ {q}. In this case we have εi,` = 1, ai ∈ Z×` for all i ∈ I and x = aq ∈ Z×` , too, whence
(ai, x)` = 1 by Lemma 4.3.

By the discussion above the only exception where possibly (ai, x)` 6= εi,` is ` = q not treated by the
above 3 cases. This is the point where Dirichlet’s Theorem—that we could choose q ≡ a (mod m) to
be a prime—comes into force. Indeed, by Hilbert’s reciprocity law (Thm. 5.2) and condition (2) the
equality (ai, x)` = εi,` must fail at an even number of places, so it cannot just be the single place ` = q.
This shows we have (ai, x)q = εi,q proving the result in Case 1.

Case 2: This is the general case where we no longer assume S ∩ T = ∅. By assumption (3) there
exists an element xv ∈ Q×v for all v ∈ S such that (xv, ai)v = εi,v for all i ∈ I. In order to proceed
further we need the following approximation theorem.

Lemma 5.4. Assume S ⊂ P ∪ {∞} is a finite set. Then the diagonal embedding Q ↪→
∏

v∈S Qv has
dense image where the right hand side is given the product topology of the topologies induced by the
v-adic absolute values on Qv (v ∈ S).

Proof. We may increase S to have ∞ ∈ S, so we may assume S = {∞, p1, . . . , pn}. The density in the
product topology means that for all (x∞, x1, . . . , xn) ∈

∏
v∈S Qv = R×Qp1×· · ·×Qpn , ε > 0 andN ∈ Z>0

there exists a rational number x ∈ Q such that |x−x∞|∞ ≤ ε and vpi(x−xi) ≥ N (⇔ |x−xi|pi ≤ p−N)
(i = 1, . . . , n). Replacing (x∞, x1, . . . , xn) by ((p1 . . . pn)

Mx∞, (p1 . . . pn)
Mx1, . . . , (p1 . . . pn)

Mxn), ε by
ε

(p1...pn)M
and N by N +M for some large enough M we may assume without loss of generality that xi

belongs to Zpi for all i = 1, . . . , n. By the Chinese Remainder Theorem there exists an integer x0 ∈ Z
such that x0 ≡ xi (mod pNi ) for all i = 1, . . . , n as the prime powers pNi are pairwise coprime. Pick a
prime q different from p1, . . . , pn and choose L > 0 so that (p1...pn)N

qL
< ε. Then for any integer u ∈ Z and

i = 1, . . . , n we have

|x0 +
u(p1 . . . pn)

N

qL
− xi|pi ≤ max(|x0 − xi|pi , |

u(p1 . . . pn)
N

qL
|pi) ≤ p−N .

On the other hand, we may choose u ∈ Z such that |x0−x∞+ u(p1...pn)N

qL
|∞ < ε so that x := x0+

u(p1...pn)N

qL

satisfies all the required conditions.
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Note that the square elements (Q×v )2 form an open subset of Qv: Indeed, in case v =∞ this is obvious
as all positive numbers are squares in R. In case v = p 6= 2 is a prime this follows from Proposition 2.6
and in case v = 2 from Proposition 2.7. So we may apply Lemma 5.4 to find an element x′ ∈ Q× such
that x′

xv
is a nonzero square in Qv for all v ∈ S. In particular, we deduce (ai, x

′)v = (ai, xv)v = εi,v for
all i ∈ I and v ∈ S. Put ηi,` := εi,`(ai, x

′)` for ` ∈ P ∪ {∞}. The new bunch of signs (ηi,`)i∈I,`∈P∪{∞}
satisfies (1), (2), (3) by Theorem 5.2 (applied to (ai, x

′)`) since so does (εi,`)i∈I,`∈P∪{∞}. Further, we have
ηi,v = 1 for all v ∈ S by construction. Therefore we may apply Case 1 to find an element y ∈ Q×
satisfying (ai, y)` = ηi,` for all i ∈ I and ` ∈ P ∪ {∞}. By the bilinearity of the Hilbert symbol x := x′y
satisfies (ai, x)` = εi,` for all i ∈ I and ` ∈ P ∪ {∞} deducing the theorem in the general case.

6 Proof of the Hasse–Minkowski Theorem
In order to prove the main theorem in this minicourse we need to recall some generalities on quadratic

forms (valid over any field K of characteristic different from 2). Let f(x1, . . . , xn) =
∑

1≤i≤j≤n ai,jxixj ∈
K[x1, . . . , xn] be a quadratic form, ie. a homogeneous polynomial of degree 2. To f we associate the sym-

metric matrix Af :=


a1,1

. . . ai,j
2

ai,j
2

. . .
an,n

 so that we have f(x1, . . . , xn) =
(
x1 · · · xn

)
Af

x1...
xn

.

We put βf : Kn ×Kn → K for the associated symmetric bilinear form given by the formula βf (u,w) =
uTAfw.

Definition. We call the form β nondegenerate if for all 0 6= w ∈ Kn there is a u ∈ Kn such that
β(u,w) 6= 0. We call a quadratic form f nondegenerate if the associated symmetric bilinear form βf is
nondegenerate.

By quotienting out by the radical rad β = {w ∈ Kn | β(u,w) = 0 ∀u ∈ Kn} (or equivalently
reducing the number of variables after a suitable change of basis) we may assume from now on that β
is nondegenerate.

Definition. We call the symmetric bilinear form β isotropic if there exists a nonzero vector 0 6= w ∈ Kn

with β(w,w) = 0.

Recall that in this language Theorem 3.1 states that a symmetric bilinear form β over Q is isotropic
over Q if and only if β is isotropic over Qv for all v ∈ P ∪ {∞}.

Lemma 6.1. Assume β is isotropic and nondegenerate. Then for all a ∈ K there is a vector w ∈ Kn

such that β(w,w) = a (we say that a is represented by the quadratic form β(u, u)).

Proof. Since β is isotropic, there is a vector u 6= 0 ∈ Kn with β(u, u) = 0. On the other hand, β is
nondegenerate, so there is a y ∈ Kn such that β(u, y) 6= 0. We look for w in the form w = cu+y (c ∈ K
given later). We compute

β(cu+ y, cu+ y) = c2β(u, u) + 2cβ(u, y) + β(y, y) .

Therefore c := a−β(y,y)
2β(u,y)

will do as charK 6= 2.

Proposition 6.2. Let f(x1, . . . , xn) be a nondegenerate quadratic form over K with charK 6= 2. Then
f represents a ∈ K if and only if the form f(x1, . . . , xn) − ax20 (in n + 1 variables, x0 being a new
variable) is isotropic.
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Proof. Note that a = 0 is always represented and f(x1, . . . , xn) − 0x20 is indeed isotropic by the choice
x0 = 1, x1 = · · · = xn = 0. Now assume a 6= 0. If f is isotropic then by Lemma 6.1 f represents a
and in this case f − ax20 is also isotropic. So assume f is not isotropic, but f − ax20 is. Then there are
elements α0, α1, . . . , αn ∈ K, not all zero, such that f(α1, . . . , αn) − aα2

0 = 0. Since f is not isotropic,
we must have α0 6= 0 whence a = f(α1

α0
, . . . , αn

α0
) is represented by f .

With all this preparation at hand, we can now start the

Proof of Theorem 3.1. Pick a quadratic form f over Q. By the Gram–Schmidt orthogonalization we may
assume f is in diagonal form f = a1x

2
1 + · · · + anx

2
n (a1 . . . an 6= 0). Further, by rescaling the variables

and multiplying by a constant we may, as well, assume that ai are square-free integers (i = 1, . . . , n)
and a1 = 1. We shall proceed by induction on n, but we need to distinguish all n ≤ 4. The case n = 1
is trivial: in this f cannot be isotropic locally either.

1. n = 2. Then f = x21 − ax22 where a > 0 since f is isotropic over R. Further, a is a square in Qp

therefore vp(a) is even for all primes p. So a is a square in Q since all primes are on even exponent
in the prime decomposition.

2. n = 3, f = x1 − ax22 − bx23 with a, b ∈ Z squarefree. We also assume |a| ≤ |b| by symmetry. We
proceed by induction on m := |a| + |b|. The case m = 2 is obvious since the form x21 ± x22 ± x23
has a nontrivial rational root unless both signs are + in which case the form is not isotropic over
R, either. So let m > 2 whence |b| ≥ 2. Write b = ±p1 . . . pk in prime decomposition. Since the
form x21 − ax22 − bx23 is isotropic over Qv, we have (a, b)v = 1 for all v ∈ P ∪ {∞} by the definition
of the Hilbert symbol. So by Theorem 4.5 we have pi | a or

(
a
pi

)
= 1 (i = 1, . . . , k) as we have

vpi(b) = 1. Either way the congruence x2 ≡ a (mod pi) has a solution for all i = 1, . . . , n. Hence
by the Chinese Remainder Theorem a is a square modulo b, too. In particular there exists an
integer t with |t| ≤ |b|

2
such that t2 ≡ a (mod b), ie. t2 = a+ bb′ with |b′| < |b|. This equation reads

t2− a · 12− bb′ · 12 = 0 meaning (a, bb′)v = 1 for all v ∈ P ∪ {∞}. So by the multiplicativity of the
local Hilbert symbols we deduce (a, b′)v = (a, b2b′)v = (a, b)v(a, bb

′)v = 1 for all v ∈ P ∪{∞}. Since
|a|+ |b′| < |a|+ |b|, using the induction we deduce that the form x21 − ax22 − b′x23 is isotropic over
Q. In particular, both b′ and bb′ are norms of elements of Q(

√
a) by Proposition 4.1. Therefore

their quotient b is also a norm from Q(
√
a whence x21 − ax22 − bx23 is also isotropic over Q (using

Proposition 4.1 again in the reverse direction).

3. n = 4, f = (ax21 + bx22)− (cx23 + dx24). We need a common value of the binary forms ax21 + bx22 and
cx23 + dx24.

Lemma 6.3. For all v ∈ P ∪ {∞} there exists 0 6= xv ∈ Qv such that xv is represented by both
forms ax21 + bx22 and cx23 + dx24.

Proof. There is a common value nontrivially as f is isotropic over Qv. Now if this common value
is 0 then at least one of the two binary forms is isotropic over Qv (as it represents 0 nontrivially).
By Lemma 6.1 isotropic forms represent any element in Qv so we just need to pick a nonzero value
of the other form which certainly exists.

So we pick these elements xv ∈ Qv for all v ∈ P ∪ {∞}. By Proposition 6.2 both forms

xvz
2 − ax21 − bx22 and xvz

2 − cx23 − dx24
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are isotropic over Qv. So we compute

1 =

(
a

xv
,
b

xv

)
v

= (axv, bxv)v = (axv,−abx2v)v =

= (axv,−ab)v = (a,−ab)v(xv,−ab)v = (a, b)v(xv,−ab)v

which implies (xv,−ab)v = (a, b)v and by a similar computation (xv,−cd)v = (c, d)v for all v ∈
P ∪ {∞}. By Theorem 5.2 we have

∏
v∈P∪{∞}(a, b)v = 1 =

∏
v∈P∪{∞}(c, d)v whence we have∏

v∈P∪{∞}(xv,−ab)v = 1 =
∏

v∈P∪{∞}(xv,−cd)v. Further, (a, b)v = −1 or (c, d)v = −1 for only
finitely many places v. Therefore we may apply Theorem 5.3 with a1 = −ab, a2 = −cd, ε1,v =
(xv,−ab)v = (a, b)v, ε2,v = (xv,−cd)v = (c, d)v since condition (3) is also satisfied by the given
xv ∈ Q×v (v ∈ P ∪ {∞}). So we find an element x ∈ Q× such that (x,−ab)v = (a, b)v and
(x,−cd)v = (c, d)v for all v ∈ P ∪ {∞}. By the same computation as above (xv replaced by x),
we deduce

(
a
x
, b
x

)
v
= 1 =

(
c
x
, d
x

)
v
for all v ∈ P ∪ {∞}. Hence the quadratic forms ax21 + bx22 − xz2

and cx23 + dx24− xz2 are both isotropic locally everywhere which implies by the case n = 3 already
proven above that they are also isotropic over Q. By Proposition 6.2 both binary forms ax21 + bx22
and cx23 + dx24 represent x 6= 0 showing f is isotropic over Q.

Finally assume n ≥ 5. In this case we do induction on n. Pick a form

f = a1x
2
1 + a2x

2
2 + a3x

2
3 + · · ·+ anx

2
n = h− g

where we put h = a1x
2
1 + a2x

2
2 and g = −(a3x23 + · · ·+ anx

2
n) and assume a1, . . . , an ∈ Z are squarefree.

As above we look for common values of g and h. Put

S := {∞, 2} ∪ {p ∈ P | ∃i ≥ 3: p | ai} ,

this is a finite set. As in Lemma 6.3, for all v ∈ S there exists an element 0 6= av ∈ Qv such that av is
represented by both forms g and h, ie. we have xv1, xv2, xv3, . . . , xvn ∈ Qv such that

h(xv1, x
v
2) = av = g(xv3, . . . , x

v
n) .

Since av(Q×v )2 is open in Qv and h : Qv × Qv → Qv is continuous (in the v-adic topology), there exist
open neighbourhoods xv1 ∈ U v

1 ⊂ Qv and xv2 ∈ U v
2 ⊂ Qv such that the image of h on U v

1 ×U v
2 is contained

in av(Q×v )2. By Lemma 5.4 (applied twice) there exist x1, x2 ∈ Q such that xj ∈ U v
j for all v ∈ S

and j = 1, 2. We put a := h(x1, x2) 6= 0 and claim that a is a common value of g and h over Q. By
construction a is represented by h over Q so by Proposition 6.2 we are reduced to showing that the
n− 1-variable form

f1 = az2 − g(x3, . . . , xn)
is isotropic over Q. By induction, we only need to check that f1 is isotropic locally everywhere. If v
lies in S then a

av
is a square in a = h(x1, x2) ∈ h(U v

1 , U
v
2 ) ⊆ av(Q×v )2, ie. there exists uv ∈ Q×v such that

a = avu
2
v = g(xv3, . . . , x

v
n)u

2
v = g(xv3uv, . . . , x

v
nuv) is represented by g locally at v. On the other hand if

v ∈ (P ∪ {∞}) \ S then a3, . . . , an are v-adic units (ie. lie in Z×v ) whence g is isotropic locally at v by
Lemma 4.3 and represents a by Lemma 6.1.

Corollary 6.4. Let a be in Q× and f be a quadratic form over Q. Then f represents a over Q if and
only if it represents a over Qv for all v ∈ P ∪ {∞}.

Proof. We apply Theorem 3.1 on the form az2 − f and deduce the statement from Proposition 6.2.

Remark. Assume n ≥ 5 and p is a prime. Then all nondegenerate forms in n variables are isotropic
over Qp. In particular, if f is a nondegenerate quadratic form over Q in n ≥ 5 variables then f is
isotropic over Q if and only if it is isotropic over R (ie. it is indefinite).
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Proof. It suffices to treat the case n = 5 so let f = a1x
2
1 + · · · + a5x

2
5. By rescaling the variables we

may assume a1, . . . , a5 are all in Zp but not divisible by p2. Further, there are either at least 3 indices
1 ≤ i ≤ 5 with vp(ai) = 0 or at least 3 indices with vp(ai) = 1. Note that f is isotropic if and only if so is
pf , so we may even assume that there are at least 3 indices i with vp(ai) = 0. In case p 6= 2 the remark
follows from Lemma 4.3. In case p = 2 one checks by a direct computation that all elements mod 8 are
represented by any 4-variable form a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 where a1, a2, a3 are all odd. Finally one

applies Proposition 2.7.
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