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Introduction Galois representations and automorphic forms modulo p 2 / 15

Motivation

f (x) ∈ Z[x ] irreducible. How does f decompose modulo p? (2 - p
prime)

Easiest example: f (x) = x2 − d for some d ∈ Z

x2 − d ≡ x2 (mod p) ⇐⇒ p | d

x2 − d ≡ (x − b)(x + b) (mod p) (b 6= 0) ⇐⇒
(
d

p

)
= 1

x2 − d irreducible (mod p) ⇐⇒
(
d

p

)
= −1 .

Recall the quadratic reciprocity law: (p 6= q odd primes)(
q

p

)
= (−1)

(p−1)(q−1)
4

(
p

q

)
,

(
2
p

)
= (−1)

p2−1
8 .
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Why representations? Galois representations and automorphic forms modulo p 3 / 15

Reformulate the problem!

If d = 2εq1 . . . qr then—using the multiplicativity of
(
·
p

)
—

(
d

p

)
=

(
2
p

)ε r∏
i=1

(
qi
p

)
= (−1)ε(p

2−1)/8
r∏

i=1

(−1)(p−1)(qi−1)/4
(
p

qi

)
.

Key observation: the decomposition of x2 − d over Fp depends

only on p mod (4d). The functionp 7→
(
d
p

)
is a homomorphism

χ :=

(
d

·

)
: (Z/4dZ)× → {±1} .

What did we attach this Dirichlet character to?

To a character of the Galois group!
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Why representations? Galois representations and automorphic forms modulo p 4 / 15

Put F = Q(
√
d) = {a + b

√
d | a, b ∈ Q}. Galois extension of

Q with Galois group G := Gal(F/Q) ∼= C2.
Nontrivial element in G maps a + b

√
d to a− b

√
d . Unique

nontrivial character: ρ : G → {±1}.

How do we read the decomposition of f mod p from Gal(F/Q)?

To reduce mod p we need integral structure: Let
OF = {β ∈ F : mβ(x) ∈ Z[x ]} be the ring of integers in F .

OF =

{
{a + b

√
d | a, b ∈ Z} if d ≡ 2, 3 (mod 4)

{a + b 1+
√
d

2 | a, b ∈ Z} if d ≡ 1 (mod 4)

OF is a Dedekind domain: even though we may not have unique
factorization for elements, but we do have unique factorization of
ideals (into products of prime ideals)! Factorization of pOF is
related to that of x2 − d (mod p):
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Why representations? Galois representations and automorphic forms modulo p 5 / 15

Key: Decomposing pOF is equivalent to finding the prime ideals in
OF/pOF

∼= Fp[x ]/(x2 − d). 3 possiblities (p is still odd)

p ramifies: pOF = p2
1 ⇐⇒ p | d ⇐⇒ x2−d ≡ x2 (mod p);

p splits: p = p1p2 ⇐⇒
(
d
p

)
= 1 ⇐⇒

⇐⇒ x2 − d ≡ (x − b)(x − c) (mod p);

pOF = pOF remains prime ⇐⇒
(
d
p

)
= −1 ⇐⇒ x2 − d

irred. mod p.
Fact: G acts transitively on the primes of OF dividing p.
OF/p1 ∼= Fp(

√
d), so the stabilizer Gp1 ≤ G of p1 maps onto

Gal(Fp(
√
d)/Fp) = 〈Frobp〉.

Assuming p - 4d we may choose a lift F̃robp ∈ G which is trivial iff
ρ(F̃robp) = 1 iff p splits.

How does ρ correspond to χ =
(
d
·
)

: (Z/4dZ)× → {±1}?
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Why representations? Galois representations and automorphic forms modulo p 6 / 15

G is naturally a quotient group of (Z/4dZ)×!

We may write
√
d as a sum of 4dth roots of unity: For q 6= 2

and ζn primitive nth root of 1 prime (n ≥ 1) we have√
(−1)

q−1
2 q =

q−1∑
j=0

ζ j
2

q ,
√
2 = ζ8 + ζ7

8 .

This shows Q(
√
d) ≤ Q(ζ4d) whence G = Gal(Q(

√
d)/Q) is a

quotient of Gal(Q(ζ4d)/Q) ∼= (Z/4dZ)×:

Gal(Q(ζ4d)/Q) 3 g 7→ k (mod 4d) if g(ζ4d) = ζk4d .

Theorem (Kronecker–Weber, 19th century)
If F/Q Galois with abelian Galois group then there exists an integer
n ≥ 1 such that F ≤ Q(ζn).
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More modern formulation Galois representations and automorphic forms modulo p 7 / 15

Theorem
The maximal abelian extension of Q is Q(µ∞) :=

⋃
n Q(ζn).

The absolute Galois group of Q is the group GQ := Gal(Q/Q) of all
automorphisms of the field Q of algebraic numbers.
Theorem implies G ab

Q = GQ/[GQ,GQ] = Gal(Q(µ∞)/Q).

Can we describe this abelian group?

If n = pα1
1 · · · pαr

r then the Chinese Remainder Theorem yields

Gal(Q(ζn)/Q) ∼= (Z/nZ)× ∼=
r∏

i=1

(
Z/pαi

i Z
)×

What does n→∞ mean in this context?
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The p-adic numbers Galois representations and automorphic forms modulo p 8 / 15

The elements of Z/pαZ have the form

a = a0 + a1p + · · ·+ aα−1p
α−1

with ai ∈ {0, 1, . . . , p− 1} for all 0 ≤ i ≤ α− 1. Moreover, a lies in
(Z/pαZ)×, ie. (a, p) = 1 iff a0 6= 0.

Here α→∞ means we should consider infinite (formal) sums

a = a0 + a1p + · · ·+ aα−1p
α−1 + · · · =

∞∑
i=0

aip
i .

These form a ring under usual addition and multiplication—the ring
Zp of p-adic integers. Note that we need to “carry over” when, say,
we add 1 and p − 1: it will be 0 + 1 · p + 0 · p2 + · · · .
We can embed Z into Zp, eg. we have

−1 = (p − 1) + (p − 1)p + · · ·+ (p − 1)pi + · · · .

Zp is not a field, the invertible elements are those with a0 6= 0.
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The elements of Z/pαZ have the form

a = a0 + a1p + · · ·+ aα−1p
α−1
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The field Qp of p-adic numbers is defined as the field of fractions
of Zp—it suffices to invert p. The nonzero elements of Qp can be
written as

a =
∞∑

i=−N
aip

i

with N ∈ Z which expansion is unique once we assume a−N 6= 0.

The maximal abelian Galois group of Q can be described as

G ab
Q
∼=

∏
p prime

Z×p .

Note that any character ρ : GQ → C× factors through G ab
Q , so we

have a correspondence

{characters of GQ} ↔ {characters of
∏

p prime

Z×p } .
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Problem: What can we say about polynomials f (x) ∈ Z[x ] of
higher degree? The above picture only sees those with abelian
Galois group which is not the case in general!

We need to consider higher dimensional representations!
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The Galois side

C× = GL1(C), so we consider group homomorphisms

ρ : GQ → GLn(K )

into the group of invertible n × n matrices over a field K .

GQ is a very misterious group: Inverse Galois problem
(believed to be true) asks whether all the finite groups arise as
a (continuous) quotient of GQ. Known (Shafarevich 1970s) to
be true for soluble groups.
Q is a subfield in Qp, so we may embed Q (non-uniquely) into
the algebraic closure Qp.
This yields an embedding GQp ↪→ GQ of absolute Galois
groups. The “local” Galois groups GQp are much easier to
understand: for instance, they are soluble!
We may think of ρ as a bunch of local Galois representations
ρp : GQp → GLn(K ) together with some compatibility
conditions.
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Other polynomials? Galois representations and automorphic forms modulo p 12 / 15

Automorphic side

Attached to a prime p we have the subgroup
Z×p ≤

∏
` prime Z

×
` . Note that we also have the class of p in

(Z/`rZ) for all primes ` 6= p. For a character χ of
∏
` prime Z

×
`

we may glue these two together to obtain a character of
Q×p = Z×p × pZ.

So the natural n-dimensional generalizations of this are
representations of GLn(Qp) on arbitrary vectorspaces.
Compatibility conditions for varying primes p: “automorphic
forms”

Langlands programme: Match these two sides!



Other polynomials? Galois representations and automorphic forms modulo p 12 / 15

Automorphic side

Attached to a prime p we have the subgroup
Z×p ≤

∏
` prime Z

×
` . Note that we also have the class of p in

(Z/`rZ) for all primes ` 6= p. For a character χ of
∏
` prime Z

×
`

we may glue these two together to obtain a character of
Q×p = Z×p × pZ.
So the natural n-dimensional generalizations of this are
representations of GLn(Qp) on arbitrary vectorspaces.

Compatibility conditions for varying primes p: “automorphic
forms”

Langlands programme: Match these two sides!



Other polynomials? Galois representations and automorphic forms modulo p 12 / 15

Automorphic side

Attached to a prime p we have the subgroup
Z×p ≤

∏
` prime Z

×
` . Note that we also have the class of p in

(Z/`rZ) for all primes ` 6= p. For a character χ of
∏
` prime Z

×
`

we may glue these two together to obtain a character of
Q×p = Z×p × pZ.
So the natural n-dimensional generalizations of this are
representations of GLn(Qp) on arbitrary vectorspaces.
Compatibility conditions for varying primes p: “automorphic
forms”

Langlands programme: Match these two sides!



Other polynomials? Galois representations and automorphic forms modulo p 12 / 15

Automorphic side

Attached to a prime p we have the subgroup
Z×p ≤

∏
` prime Z

×
` . Note that we also have the class of p in

(Z/`rZ) for all primes ` 6= p. For a character χ of
∏
` prime Z

×
`

we may glue these two together to obtain a character of
Q×p = Z×p × pZ.
So the natural n-dimensional generalizations of this are
representations of GLn(Qp) on arbitrary vectorspaces.
Compatibility conditions for varying primes p: “automorphic
forms”

Langlands programme: Match these two sides!



What is known Galois representations and automorphic forms modulo p 13 / 15

What is known

n = 1
Classical local Langlands (Harris–Taylor, Henniart): matching
n-dimensional GQp -representations over Q` with
representations of GLn(Qp) over Q` (` 6= p)
Elliptic curves: E : y2 = x3 + ax + b  Galois representation:
E [`r ] ∼= Z/`rZ⊕ Z/`rZ. GQ acts on this, so we obtain a
representation ρE ,`r into GL2(Z/`rZ).

Theorem (Wiles, Taylor–Wiles, 1994)
Elliptic curves are modular.

This lead to a proof of Fermat’s Last Theorem!
n = 2 is almost settled (Berger, Breuil, Colmez, Emerton,
Kisin, Paškunas) globally—this needed a stronger local
Langlands allowing ` = p proven for n = 2 by Colmez
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Easier to explain the mod p situation (representations over Fp on
both sides)—closely related to p-adic representations.

n = 2: Settled by Colmez+others (as above): Colmez
constructed a functor

V : {GL2(Qp)−representations /Fp} → {GQp−representations /Fp}

that is “compatible” with the global picture
Various attempts to generalize this to n > 2 (Breuil,
Große-Klönne, Schneider–Vigneras, Z)—constructions of
functors
Z: functor V∆ to representations of GQp × · · · × GQp︸ ︷︷ ︸

n

×Q×p

with many nice properties

Conjecture (Z, building on Breuil–Herzig–Schraen)
To an automorphic representation Πp the functor V∆ attaches⊗n

i=1 ∧iρp where ρp ↔ Πp.
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Thanks for your attention!
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