Galois representations and automorphic forms modulo p

Gergely Zábrádi
Eötvös Loránd University Budapest Institute of Mathematics
Department of Algebra and Number Theory
zger@cs.elte.hu

Motivation

$f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p ? $(2 \nmid p$ prime)

Motivation

$f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p ? ($2 \nmid p$ prime) Easiest example: $f(x)=x^{2}-d$ for some $d \in \mathbb{Z}$

$$
\begin{aligned}
x^{2}-d \equiv x^{2}(\bmod p) & \Longleftrightarrow p \mid d \\
x^{2}-d \equiv(x-b)(x+b)(\bmod p)(b \neq 0) & \Longleftrightarrow\left(\frac{d}{p}\right)=1 \\
x^{2}-d \text { irreducible }(\bmod p) & \Longleftrightarrow\left(\frac{d}{p}\right)=-1
\end{aligned}
$$

Motivation

$f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p ? ($2 \nmid p$ prime) Easiest example: $f(x)=x^{2}-d$ for some $d \in \mathbb{Z}$

$$
\begin{aligned}
x^{2}-d \equiv x^{2}(\bmod p) & \Longleftrightarrow p \mid d \\
x^{2}-d \equiv(x-b)(x+b)(\bmod p)(b \neq 0) & \Longleftrightarrow\left(\frac{d}{p}\right)=1 \\
x^{2}-d \text { irreducible }(\bmod p) & \Longleftrightarrow\left(\frac{d}{p}\right)=-1
\end{aligned}
$$

Recall the quadratic reciprocity law: $(p \neq q$ odd primes)

$$
\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}\left(\frac{p}{q}\right), \quad\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}} .
$$

Reformulate the problem!

If $d=2^{\epsilon} q_{1} \ldots q_{r}$ then-using the multiplicativity of $(\dot{\bar{p}})$ -

$$
\left(\frac{d}{p}\right)=\left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r}\left(\frac{q_{i}}{p}\right)=(-1)^{\epsilon\left(p^{2}-1\right) / 8} \prod_{i=1}^{r}(-1)^{(p-1)\left(q_{i}-1\right) / 4}\left(\frac{p}{q_{i}}\right)
$$

Reformulate the problem!

If $d=2^{\epsilon} q_{1} \ldots q_{r}$ then-using the multiplicativity of $(\dot{\bar{p}})$ -

$$
\left(\frac{d}{p}\right)=\left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r}\left(\frac{q_{i}}{p}\right)=(-1)^{\epsilon\left(p^{2}-1\right) / 8} \prod_{i=1}^{r}(-1)^{(p-1)\left(q_{i}-1\right) / 4}\left(\frac{p}{q_{i}}\right) .
$$

Key observation: the decomposition of $x^{2}-d$ over \mathbb{F}_{p} depends only on $p \bmod (4 d)$. The function $p \mapsto\left(\frac{d}{p}\right)$ is a homomorphism

$$
\chi:=\left(\frac{d}{\cdot}\right):(\mathbb{Z} / 4 d \mathbb{Z})^{\times} \rightarrow\{ \pm 1\} .
$$

Reformulate the problem!

If $d=2^{\epsilon} q_{1} \ldots q_{r}$ then-using the multiplicativity of $(\dot{\bar{p}})$ -

$$
\left(\frac{d}{p}\right)=\left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r}\left(\frac{q_{i}}{p}\right)=(-1)^{\epsilon\left(p^{2}-1\right) / 8} \prod_{i=1}^{r}(-1)^{(p-1)\left(q_{i}-1\right) / 4}\left(\frac{p}{q_{i}}\right) .
$$

Key observation: the decomposition of $x^{2}-d$ over \mathbb{F}_{p} depends only on $p \bmod (4 d)$. The function $p \mapsto\left(\frac{d}{p}\right)$ is a homomorphism

$$
\chi:=\left(\frac{d}{\cdot}\right):(\mathbb{Z} / 4 d \mathbb{Z})^{\times} \rightarrow\{ \pm 1\} .
$$

What did we attach this Dirichlet character to?

Reformulate the problem!

If $d=2^{\epsilon} q_{1} \ldots q_{r}$ then-using the multiplicativity of $\left(\frac{\dot{\bar{p}}}{}\right)$ -

$$
\left(\frac{d}{p}\right)=\left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r}\left(\frac{q_{i}}{p}\right)=(-1)^{\epsilon\left(p^{2}-1\right) / 8} \prod_{i=1}^{r}(-1)^{(p-1)\left(q_{i}-1\right) / 4}\left(\frac{p}{q_{i}}\right) .
$$

Key observation: the decomposition of $x^{2}-d$ over \mathbb{F}_{p} depends only on $p \bmod (4 d)$. The function $p \mapsto\left(\frac{d}{p}\right)$ is a homomorphism

$$
\chi:=\left(\frac{d}{\cdot}\right):(\mathbb{Z} / 4 d \mathbb{Z})^{\times} \rightarrow\{ \pm 1\} .
$$

What did we attach this Dirichlet character to?
To a character of the Galois group!

- Put $F=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Galois extension of \mathbb{Q} with Galois group $G:=\operatorname{Gal}(F / \mathbb{Q}) \cong C_{2}$.
- Nontrivial element in G maps $a+b \sqrt{d}$ to $a-b \sqrt{d}$. Unique nontrivial character: $\rho: G \rightarrow\{ \pm 1\}$.
- Put $F=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Galois extension of \mathbb{Q} with Galois group $G:=\operatorname{Gal}(F / \mathbb{Q}) \cong C_{2}$.
- Nontrivial element in G maps $a+b \sqrt{d}$ to $a-b \sqrt{d}$. Unique nontrivial character: $\rho: G \rightarrow\{ \pm 1\}$.

How do we read the decomposition of $f \bmod p$ from $\operatorname{Gal}(F / \mathbb{Q})$?

- Put $F=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Galois extension of \mathbb{Q} with Galois group $G:=\operatorname{Gal}(F / \mathbb{Q}) \cong C_{2}$.
- Nontrivial element in G maps $a+b \sqrt{d}$ to $a-b \sqrt{d}$. Unique nontrivial character: $\rho: G \rightarrow\{ \pm 1\}$.

How do we read the decomposition of $f \bmod p$ from $\operatorname{Gal}(F / \mathbb{Q})$?

- To reduce mod p we need integral structure: Let $\mathcal{O}_{F}=\left\{\beta \in F: m_{\beta}(x) \in \mathbb{Z}[x]\right\}$ be the ring of integers in F.

$$
\mathcal{O}_{F}= \begin{cases}\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\} & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \left\{\left.a+b \frac{1+\sqrt{d}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\} & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

- Put $F=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Galois extension of \mathbb{Q} with Galois group $G:=\operatorname{Gal}(F / \mathbb{Q}) \cong C_{2}$.
- Nontrivial element in G maps $a+b \sqrt{d}$ to $a-b \sqrt{d}$. Unique nontrivial character: $\rho: G \rightarrow\{ \pm 1\}$.

How do we read the decomposition of $f \bmod p$ from $\operatorname{Gal}(F / \mathbb{Q})$?

- To reduce $\bmod p$ we need integral structure: Let $\mathcal{O}_{F}=\left\{\beta \in F: m_{\beta}(x) \in \mathbb{Z}[x]\right\}$ be the ring of integers in F.

$$
\mathcal{O}_{F}= \begin{cases}\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\} & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \left\{\left.a+b \frac{1+\sqrt{d}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\} & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

\mathcal{O}_{F} is a Dedekind domain: even though we may not have unique factorization for elements, but we do have unique factorization of ideals (into products of prime ideals)!

- Put $F=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Galois extension of \mathbb{Q} with Galois group $G:=\operatorname{Gal}(F / \mathbb{Q}) \cong C_{2}$.
- Nontrivial element in G maps $a+b \sqrt{d}$ to $a-b \sqrt{d}$. Unique nontrivial character: $\rho: G \rightarrow\{ \pm 1\}$.

How do we read the decomposition of $f \bmod p$ from $\operatorname{Gal}(F / \mathbb{Q})$?

- To reduce $\bmod p$ we need integral structure: Let $\mathcal{O}_{F}=\left\{\beta \in F: m_{\beta}(x) \in \mathbb{Z}[x]\right\}$ be the ring of integers in F.

$$
\mathcal{O}_{F}= \begin{cases}\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\} & \text { if } d \equiv 2,3 \quad(\bmod 4) \\ \left\{\left.a+b \frac{1+\sqrt{d}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\} & \text { if } d \equiv 1 \quad(\bmod 4)\end{cases}
$$

\mathcal{O}_{F} is a Dedekind domain: even though we may not have unique factorization for elements, but we do have unique factorization of ideals (into products of prime ideals)! Factorization of $p \mathcal{O}_{F}$ is related to that of $x^{2}-d(\bmod p)$:

Key: Decomposing $p \mathcal{O}_{F}$ is equivalent to finding the prime ideals in $\mathcal{O}_{F} / p \mathcal{O}_{F} \cong \mathbb{F}_{p}[x] /\left(x^{2}-d\right)$. 3 possiblities (p is still odd)

Key: Decomposing $p \mathcal{O}_{F}$ is equivalent to finding the prime ideals in $\mathcal{O}_{F} / p \mathcal{O}_{F} \cong \mathbb{F}_{p}[x] /\left(x^{2}-d\right) .3$ possiblities (p is still odd)

- p ramifies: $p \mathcal{O}_{F}=\mathfrak{p}_{1}^{2} \Longleftrightarrow p \mid d \Longleftrightarrow x^{2}-d \equiv x^{2}(\bmod p)$;
- p splits: $p=\mathfrak{p}_{1} \mathfrak{p}_{2} \Longleftrightarrow\left(\frac{d}{p}\right)=1 \Longleftrightarrow$

$$
\Longleftrightarrow x^{2}-d \equiv(x-b)(x-c)(\bmod p)
$$

- $p \mathcal{O}_{F}=p \mathcal{O}_{F}$ remains prime $\Longleftrightarrow\left(\frac{d}{p}\right)=-1 \Longleftrightarrow x^{2}-d$ irred. $\bmod p$.

Key: Decomposing $p \mathcal{O}_{F}$ is equivalent to finding the prime ideals in $\mathcal{O}_{F} / p \mathcal{O}_{F} \cong \mathbb{F}_{p}[x] /\left(x^{2}-d\right) .3$ possiblities (p is still odd)

- p ramifies: $p \mathcal{O}_{F}=\mathfrak{p}_{1}^{2} \Longleftrightarrow p \mid d \Longleftrightarrow x^{2}-d \equiv x^{2}(\bmod p)$;
- p splits: $p=\mathfrak{p}_{1} \mathfrak{p}_{2} \Longleftrightarrow\left(\frac{d}{p}\right)=1 \Longleftrightarrow$

$$
\Longleftrightarrow x^{2}-d \equiv(x-b)(x-c)(\bmod p)
$$

- $p \mathcal{O}_{F}=p \mathcal{O}_{F}$ remains prime $\Longleftrightarrow\left(\frac{d}{p}\right)=-1 \Longleftrightarrow x^{2}-d$ irred. $\bmod p$.
Fact: G acts transitively on the primes of \mathcal{O}_{F} dividing p. $\mathcal{O}_{F} / \mathfrak{p}_{1} \cong \mathbb{F}_{p}(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_{1}} \leq G$ of \mathfrak{p}_{1} maps onto $\operatorname{Gal}\left(\mathbb{F}_{p}(\sqrt{d}) / \mathbb{F}_{p}\right)=\left\langle\operatorname{Frob}_{p}\right\rangle$.

Key: Decomposing $p \mathcal{O}_{F}$ is equivalent to finding the prime ideals in $\mathcal{O}_{F} / p \mathcal{O}_{F} \cong \mathbb{F}_{p}[x] /\left(x^{2}-d\right)$. 3 possiblities (p is still odd)

- p ramifies: $p \mathcal{O}_{F}=\mathfrak{p}_{1}^{2} \Longleftrightarrow p \mid d \Longleftrightarrow x^{2}-d \equiv x^{2}(\bmod p)$;
- p splits: $p=\mathfrak{p}_{1} \mathfrak{p}_{2} \Longleftrightarrow\left(\frac{d}{p}\right)=1$ \qquad
$\Longleftrightarrow x^{2}-d \equiv(x-b)(x-c)(\bmod p)$;
- $p \mathcal{O}_{F}=p \mathcal{O}_{F}$ remains prime $\Longleftrightarrow\left(\frac{d}{p}\right)=-1 \Longleftrightarrow x^{2}-d$ irred. $\bmod p$.
Fact: G acts transitively on the primes of \mathcal{O}_{F} dividing p.
$\mathcal{O}_{F} / \mathfrak{p}_{1} \cong \mathbb{F}_{p}(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_{1}} \leq G$ of \mathfrak{p}_{1} maps onto $\operatorname{Gal}\left(\mathbb{F}_{p}(\sqrt{d}) / \mathbb{F}_{p}\right)=\left\langle\operatorname{Frob}_{p}\right\rangle$.
Assuming $p \nmid 4 d$ we may choose a lift $\mathrm{Frob}_{p} \in G$ which is trivial iff $\rho\left(\widetilde{\text { Frob }_{p}}\right)=1$ iff p splits.

Key: Decomposing $p \mathcal{O}_{F}$ is equivalent to finding the prime ideals in $\mathcal{O}_{F} / p \mathcal{O}_{F} \cong \mathbb{F}_{p}[x] /\left(x^{2}-d\right)$. 3 possiblities (p is still odd)

- p ramifies: $p \mathcal{O}_{F}=\mathfrak{p}_{1}^{2} \Longleftrightarrow p \mid d \Longleftrightarrow x^{2}-d \equiv x^{2}(\bmod p)$;
- p splits: $p=\mathfrak{p}_{1} \mathfrak{p}_{2} \Longleftrightarrow\left(\frac{d}{p}\right)=1$ \qquad
$\Longleftrightarrow x^{2}-d \equiv(x-b)(x-c)(\bmod p)$;
- $p \mathcal{O}_{F}=p \mathcal{O}_{F}$ remains prime $\Longleftrightarrow\left(\frac{d}{p}\right)=-1 \Longleftrightarrow x^{2}-d$ irred. $\bmod p$.
Fact: G acts transitively on the primes of \mathcal{O}_{F} dividing p.
$\mathcal{O}_{F} / \mathfrak{p}_{1} \cong \mathbb{F}_{p}(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_{1}} \leq G$ of \mathfrak{p}_{1} maps onto $\operatorname{Gal}\left(\mathbb{F}_{p}(\sqrt{d}) / \mathbb{F}_{p}\right)=\left\langle\operatorname{Frob}_{p}\right\rangle$.
Assuming $p \nmid 4 d$ we may choose a lift $\mathrm{Frob}_{p} \in G$ which is trivial iff $\rho\left(\widetilde{\text { Frob }_{p}}\right)=1$ iff p splits.

How does ρ correspond to $\chi=\left(\frac{d}{\cdot}\right):(\mathbb{Z} / 4 d \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$?
G is naturally a quotient group of $(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$!

G is naturally a quotient group of $(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$!

- We may write \sqrt{d} as a sum of $4 d$ th roots of unity: For $q \neq 2$ and ζ_{n} primitive nth root of 1 prime $(n \geq 1)$ we have

$$
\sqrt{(-1)^{\frac{q-1}{2}} q}=\sum_{j=0}^{q-1} \zeta_{q}^{j^{2}}, \quad \sqrt{2}=\zeta_{8}+\zeta_{8}^{7}
$$

G is naturally a quotient group of $(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$!

- We may write \sqrt{d} as a sum of $4 d$ th roots of unity: For $q \neq 2$ and ζ_{n} primitive nth root of 1 prime $(n \geq 1)$ we have

$$
\sqrt{(-1)^{\frac{q-1}{2}} q}=\sum_{j=0}^{q-1} \zeta_{q}^{j^{2}}, \quad \sqrt{2}=\zeta_{8}+\zeta_{8}^{7} .
$$

- This shows $\mathbb{Q}(\sqrt{d}) \leq \mathbb{Q}\left(\zeta_{4 d}\right)$ whence $G=\operatorname{Gal}(\mathbb{Q}(\sqrt{d}) / \mathbb{Q})$ is a quotient of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4 d}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$:

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4 d}\right) / \mathbb{Q}\right) \ni g \mapsto k \quad(\bmod 4 d) \text { if } g\left(\zeta_{4 d}\right)=\zeta_{4 d}^{k}
$$

G is naturally a quotient group of $(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$!

- We may write \sqrt{d} as a sum of $4 d$ th roots of unity: For $q \neq 2$ and ζ_{n} primitive nth root of 1 prime $(n \geq 1)$ we have

$$
\sqrt{(-1)^{\frac{q-1}{2}} q}=\sum_{j=0}^{q-1} \zeta_{q}^{j^{2}}, \quad \sqrt{2}=\zeta_{8}+\zeta_{8}^{7} .
$$

- This shows $\mathbb{Q}(\sqrt{d}) \leq \mathbb{Q}\left(\zeta_{4 d}\right)$ whence $G=\operatorname{Gal}(\mathbb{Q}(\sqrt{d}) / \mathbb{Q})$ is a quotient of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4 d}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / 4 d \mathbb{Z})^{\times}$:

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4 d}\right) / \mathbb{Q}\right) \ni g \mapsto k \quad(\bmod 4 d) \text { if } g\left(\zeta_{4 d}\right)=\zeta_{4 d}^{k} .
$$

Theorem (Kronecker-Weber, 19th century)

If F / \mathbb{Q} Galois with abelian Galois group then there exists an integer $n \geq 1$ such that $F \leq \mathbb{Q}\left(\zeta_{n}\right)$.

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.
The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}}:=\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.
The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}}:=\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.
Theorem implies $G_{\mathbb{Q}}^{a b}=G_{\mathbb{Q}} /\left[G_{\mathbb{Q}}, G_{\mathbb{Q}}\right]=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{\infty}\right) / \mathbb{Q}\right)$.

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.
The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}}:=\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.
Theorem implies $G_{\mathbb{Q}}^{a b}=G_{\mathbb{Q}} /\left[G_{\mathbb{Q}}, G_{\mathbb{Q}}\right]=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{\infty}\right) / \mathbb{Q}\right)$.
Can we describe this abelian group?

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.
The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}}:=\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.
Theorem implies $G_{\mathbb{Q}}^{a b}=G_{\mathbb{Q}} /\left[G_{\mathbb{Q}}, G_{\mathbb{Q}}\right]=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{\infty}\right) / \mathbb{Q}\right)$.
Can we describe this abelian group?
If $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ then the Chinese Remainder Theorem yields

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times} \cong \prod_{i=1}^{r}\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right)^{\times}
$$

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}\left(\mu_{\infty}\right):=\bigcup_{n} \mathbb{Q}\left(\zeta_{n}\right)$.
The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}}:=\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.
Theorem implies $G_{\mathbb{Q}}^{a b}=G_{\mathbb{Q}} /\left[G_{\mathbb{Q}}, G_{\mathbb{Q}}\right]=\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{\infty}\right) / \mathbb{Q}\right)$.
Can we describe this abelian group?
If $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ then the Chinese Remainder Theorem yields

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times} \cong \prod_{i=1}^{r}\left(\mathbb{Z} / p_{i}^{\alpha_{i}} \mathbb{Z}\right)^{\times}
$$

What does $n \rightarrow \infty$ mean in this context?

The elements of $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ have the form

$$
a=a_{0}+a_{1} p+\cdots+a_{\alpha-1} p^{\alpha-1}
$$

with $a_{i} \in\{0,1, \ldots, p-1\}$ for all $0 \leq i \leq \alpha-1$. Moreover, a lies in $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{\times}$, ie. $(a, p)=1$ iff $a_{0} \neq 0$.

The elements of $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ have the form

$$
a=a_{0}+a_{1} p+\cdots+a_{\alpha-1} p^{\alpha-1}
$$

with $a_{i} \in\{0,1, \ldots, p-1\}$ for all $0 \leq i \leq \alpha-1$. Moreover, a lies in $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{\times}$, ie. $(a, p)=1$ iff $a_{0} \neq 0$.
Here $\alpha \rightarrow \infty$ means we should consider infinite (formal) sums

$$
a=a_{0}+a_{1} p+\cdots+a_{\alpha-1} p^{\alpha-1}+\cdots=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

These form a ring under usual addition and multiplication-the ring \mathbb{Z}_{p} of p-adic integers. Note that we need to "carry over" when, say, we add 1 and $p-1$: it will be $0+1 \cdot p+0 \cdot p^{2}+\cdots$.

The elements of $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ have the form

$$
a=a_{0}+a_{1} p+\cdots+a_{\alpha-1} p^{\alpha-1}
$$

with $a_{i} \in\{0,1, \ldots, p-1\}$ for all $0 \leq i \leq \alpha-1$. Moreover, a lies in $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{\times}$, ie. $(a, p)=1$ iff $a_{0} \neq 0$.
Here $\alpha \rightarrow \infty$ means we should consider infinite (formal) sums

$$
a=a_{0}+a_{1} p+\cdots+a_{\alpha-1} p^{\alpha-1}+\cdots=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

These form a ring under usual addition and multiplication-the ring \mathbb{Z}_{p} of p-adic integers. Note that we need to "carry over" when, say, we add 1 and $p-1$: it will be $0+1 \cdot p+0 \cdot p^{2}+\cdots$.
We can embed \mathbb{Z} into \mathbb{Z}_{p}, eg. we have

$$
-1=(p-1)+(p-1) p+\cdots+(p-1) p^{i}+\cdots
$$

\mathbb{Z}_{p} is not a field, the invertible elements are those with $a_{0} \neq 0$.

The field \mathbb{Q}_{p} of p-adic numbers is defined as the field of fractions of \mathbb{Z}_{p} —it suffices to invert p. The nonzero elements of \mathbb{Q}_{p} can be written as

$$
a=\sum_{i=-N}^{\infty} a_{i} p^{i}
$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$.

The field \mathbb{Q}_{p} of p-adic numbers is defined as the field of fractions of \mathbb{Z}_{p}-it suffices to invert p. The nonzero elements of \mathbb{Q}_{p} can be written as

$$
a=\sum_{i=-N}^{\infty} a_{i} p^{i}
$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$. The maximal abelian Galois group of \mathbb{Q} can be described as

$$
G_{\mathbb{Q}}^{a b} \cong \prod_{p \text { prime }} \mathbb{Z}_{p}^{\times}
$$

The field \mathbb{Q}_{p} of p-adic numbers is defined as the field of fractions of \mathbb{Z}_{p}-it suffices to invert p. The nonzero elements of \mathbb{Q}_{p} can be written as

$$
a=\sum_{i=-N}^{\infty} a_{i} p^{i}
$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$. The maximal abelian Galois group of \mathbb{Q} can be described as

$$
G_{\mathbb{Q}}^{a b} \cong \prod_{p \text { prime }} \mathbb{Z}_{p}^{\times} .
$$

Note that any character $\rho: G_{\mathbb{Q}} \rightarrow \mathbb{C}^{\times}$factors through $G_{\mathbb{Q}}^{a b}$, so we have a correspondence

$$
\left\{\text { characters of } G_{\mathbb{Q}}\right\} \leftrightarrow\left\{\text { characters of } \prod_{p \text { prime }} \mathbb{Z}_{p}^{\times}\right\}
$$

Problem: What can we say about polynomials $f(x) \in \mathbb{Z}[x]$ of higher degree? The above picture only sees those with abelian Galois group which is not the case in general!

Problem: What can we say about polynomials $f(x) \in \mathbb{Z}[x]$ of higher degree? The above picture only sees those with abelian Galois group which is not the case in general!

We need to consider higher dimensional representations!

The Galois side

- $\mathbb{C}^{\times}=\mathrm{GL}_{1}(\mathbb{C})$, so we consider group homomorphisms

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(K)
$$

into the group of invertible $n \times n$ matrices over a field K.

The Galois side

- $\mathbb{C}^{\times}=\mathrm{GL}_{1}(\mathbb{C})$, so we consider group homomorphisms

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(K)
$$

into the group of invertible $n \times n$ matrices over a field K.

- $G_{\mathbb{Q}}$ is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of $G_{\mathbb{Q}}$. Known (Shafarevich 1970s) to be true for soluble groups.

The Galois side

- $\mathbb{C}^{\times}=\mathrm{GL}_{1}(\mathbb{C})$, so we consider group homomorphisms

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(K)
$$

into the group of invertible $n \times n$ matrices over a field K.

- $G_{\mathbb{Q}}$ is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of $G_{\mathbb{Q}}$. Known (Shafarevich 1970s) to be true for soluble groups.
- \mathbb{Q} is a subfield in \mathbb{Q}_{p}, so we may embed $\overline{\mathbb{Q}}$ (non-uniquely) into the algebraic closure $\overline{\mathbb{Q}}_{p}$.

The Galois side

- $\mathbb{C}^{\times}=\mathrm{GL}_{1}(\mathbb{C})$, so we consider group homomorphisms

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(K)
$$

into the group of invertible $n \times n$ matrices over a field K.

- $G_{\mathbb{Q}}$ is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of $G_{\mathbb{Q}}$. Known (Shafarevich 1970s) to be true for soluble groups.
- \mathbb{Q} is a subfield in \mathbb{Q}_{p}, so we may embed $\overline{\mathbb{Q}}$ (non-uniquely) into the algebraic closure $\overline{\mathbb{Q}}_{p}$.
- This yields an embedding $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}}$ of absolute Galois groups. The "local" Galois groups $G_{\mathbb{Q}_{p}}$ are much easier to understand: for instance, they are soluble!

The Galois side

- $\mathbb{C}^{\times}=\mathrm{GL}_{1}(\mathbb{C})$, so we consider group homomorphisms

$$
\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{n}(K)
$$

into the group of invertible $n \times n$ matrices over a field K.

- $G_{\mathbb{Q}}$ is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of $G_{\mathbb{Q}}$. Known (Shafarevich 1970s) to be true for soluble groups.
- \mathbb{Q} is a subfield in \mathbb{Q}_{p}, so we may embed $\overline{\mathbb{Q}}$ (non-uniquely) into the algebraic closure $\overline{\mathbb{Q}}_{p}$.
- This yields an embedding $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}}$ of absolute Galois groups. The "local" Galois groups $G_{\mathbb{Q}_{p}}$ are much easier to understand: for instance, they are soluble!
- We may think of ρ as a bunch of local Galois representations $\rho_{p}: G_{\mathbb{Q}_{p}} \rightarrow \mathrm{GL}_{n}(K)$ together with some compatibility conditions.

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_{p}^{\times} \leq \prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of

$$
\mathbb{Q}_{p}^{\times}=\mathbb{Z}_{p}^{\times} \times p^{\mathbb{Z}}
$$

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_{p}^{\times} \leq \prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_{p}^{\times}=\mathbb{Z}_{p}^{\times} \times p^{\mathbb{Z}}$.
- So the natural n-dimensional generalizations of this are representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ on arbitrary vectorspaces.

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_{p}^{\times} \leq \prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_{p}^{\times}=\mathbb{Z}_{p}^{\times} \times p^{\mathbb{Z}}$.
- So the natural n-dimensional generalizations of this are representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ on arbitrary vectorspaces.
- Compatibility conditions for varying primes p : "automorphic forms"

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_{p}^{\times} \leq \prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text { prime }} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_{p}^{\times}=\mathbb{Z}_{p}^{\times} \times p^{\mathbb{Z}}$.
- So the natural n-dimensional generalizations of this are representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ on arbitrary vectorspaces.
- Compatibility conditions for varying primes p : "automorphic forms"

Langlands programme: Match these two sides!

What is known

What is known

- $n=1$

What is known

- $n=1$
- Classical local Langlands (Harris-Taylor, Henniart): matching n-dimensional $G_{\mathbb{Q}_{p}}$-representations over \mathbb{Q}_{ℓ} with representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ over $\mathbb{Q}_{\ell}(\ell \neq p)$

What is known

- $n=1$
- Classical local Langlands (Harris-Taylor, Henniart): matching n-dimensional $G_{\mathbb{Q}_{p}}$-representations over \mathbb{Q}_{ℓ} with representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ over $\mathbb{Q}_{\ell}(\ell \neq p)$
- Elliptic curves: $E: y^{2}=x^{3}+a x+b \rightsquigarrow$ Galois representation: $E\left[\ell^{r}\right] \cong \mathbb{Z} / \ell^{r} \mathbb{Z} \oplus \mathbb{Z} / \ell^{r} \mathbb{Z} . G_{\mathbb{Q}}$ acts on this, so we obtain a representation $\rho_{E, \ell^{r}}$ into $\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$.

Theorem (Wiles, Taylor-Wiles, 1994)

Elliptic curves are modular.
This lead to a proof of Fermat's Last Theorem!

What is known

- $n=1$
- Classical local Langlands (Harris-Taylor, Henniart): matching n-dimensional $G_{\mathbb{Q}_{p}}$-representations over \mathbb{Q}_{ℓ} with representations of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ over $\mathbb{Q}_{\ell}(\ell \neq p)$
- Elliptic curves: $E: y^{2}=x^{3}+a x+b \rightsquigarrow$ Galois representation: $E\left[\ell^{r}\right] \cong \mathbb{Z} / \ell^{r} \mathbb{Z} \oplus \mathbb{Z} / \ell^{r} \mathbb{Z} . G_{\mathbb{Q}}$ acts on this, so we obtain a representation $\rho_{E, \ell^{r}}$ into $\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{r} \mathbb{Z}\right)$.

Theorem (Wiles, Taylor-Wiles, 1994)

Elliptic curves are modular.
This lead to a proof of Fermat's Last Theorem!

- $n=2$ is almost settled (Berger, Breuil, Colmez, Emerton, Kisin, Paškunas) globally-this needed a stronger local Langlands allowing $\ell=p$ proven for $n=2$ by Colmez

Easier to explain the $\bmod p$ situation (representations over \mathbb{F}_{p} on both sides)—closely related to p-adic representations.

Easier to explain the $\bmod p$ situation (representations over \mathbb{F}_{p} on both sides)—closely related to p-adic representations.

- $n=2$: Settled by Colmez+others (as above): Colmez constructed a functor
$\mathbb{V}:\left\{\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)\right.$-representations $\left./ \mathbb{F}_{p}\right\} \rightarrow\left\{G_{\mathbb{Q}_{p}}\right.$-representations $\left./ \mathbb{F}_{p}\right\}$ that is "compatible" with the global picture

Easier to explain the $\bmod p$ situation (representations over \mathbb{F}_{p} on both sides)—closely related to p-adic representations.

- $n=2$: Settled by Colmez+others (as above): Colmez constructed a functor
$\mathbb{V}:\left\{\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)\right.$-representations $\left./ \mathbb{F}_{p}\right\} \rightarrow\left\{G_{\mathbb{Q}_{p}}\right.$-representations $\left./ \mathbb{F}_{p}\right\}$ that is "compatible" with the global picture
- Various attempts to generalize this to $n>2$ (Breuil, Große-Klönne, Schneider-Vigneras, Z)—constructions of functors

Easier to explain the $\bmod p$ situation (representations over \mathbb{F}_{p} on both sides)—closely related to p-adic representations.

- $n=2$: Settled by Colmez+others (as above): Colmez constructed a functor
$\mathbb{V}:\left\{\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)\right.$-representations $\left./ \mathbb{F}_{p}\right\} \rightarrow\left\{G_{\mathbb{Q}_{p}}\right.$-representations $\left./ \mathbb{F}_{p}\right\}$
that is "compatible" with the global picture
- Various attempts to generalize this to $n>2$ (Breuil, Große-Klönne, Schneider-Vigneras, Z)—constructions of functors
- Z: functor \mathbb{V}_{Δ} to representations of $\underbrace{G_{\mathbb{Q}_{p}} \times \cdots \times G_{\mathbb{Q}_{p}}}_{n} \times \mathbb{Q}_{p}^{\times}$ with many nice properties

Conjecture (Z, building on Breuil-Herzig-Schraen)

To an automorphic representation Π_{p} the functor \mathbb{V}_{Δ} attaches $\otimes_{i=1}^{n} \wedge^{i} \rho_{p}$ where $\rho_{p} \leftrightarrow \Pi_{p}$.

Thanks for your attention!

