Galois representations and automorphic forms modulo $\ensuremath{\textit{p}}$

Gergely Zábrádi Eötvös Loránd University Budapest Institute of Mathematics Department of Algebra and Number Theory zger@cs.elte.hu

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Motivation

 $f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p? (2 $\nmid p$ prime)

Motivation

 $f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p? (2 $\nmid p$ prime) Easiest example: $f(x) = x^2 - d$ for some $d \in \mathbb{Z}$

$$x^{2} - d \equiv x^{2} \pmod{p} \iff p \mid d$$

$$x^{2} - d \equiv (x - b)(x + b) \pmod{p} \pmod{p} \iff \left(\frac{d}{p}\right) = 1$$

$$x^{2} - d \text{ irreducible} \pmod{p} \iff \left(\frac{d}{p}\right) = -1.$$

Motivation

 $f(x) \in \mathbb{Z}[x]$ irreducible. How does f decompose modulo p? (2 $\nmid p$ prime) Easiest example: $f(x) = x^2 - d$ for some $d \in \mathbb{Z}$

$$x^{2} - d \equiv x^{2} \pmod{p} \iff p \mid d$$

$$x^{2} - d \equiv (x - b)(x + b) \pmod{p} \pmod{p} \iff \left(\frac{d}{p}\right) = 1$$

$$x^{2} - d \text{ irreducible} \pmod{p} \iff \left(\frac{d}{p}\right) = -1.$$

Recall the quadratic reciprocity law: ($p \neq q$ odd primes)

$$\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}} \left(\frac{p}{q}\right) , \quad \left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Reformulate the problem!

If $d = 2^{\epsilon}q_1 \dots q_r$ then—using the multiplicativity of $\left(\frac{\cdot}{p}\right)$ —

$$\left(\frac{d}{p}\right) = \left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r} \left(\frac{q_i}{p}\right) = (-1)^{\epsilon(p^2-1)/8} \prod_{i=1}^{r} (-1)^{(p-1)(q_i-1)/4} \left(\frac{p}{q_i}\right)$$

Reformulate the problem!

If $d = 2^{\epsilon}q_1 \dots q_r$ then—using the multiplicativity of $\left(\frac{\cdot}{p}\right)$ —

$$\left(\frac{d}{p}\right) = \left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r} \left(\frac{q_i}{p}\right) = (-1)^{\epsilon(p^2-1)/8} \prod_{i=1}^{r} (-1)^{(p-1)(q_i-1)/4} \left(\frac{p}{q_i}\right)$$

Key observation: the decomposition of $x^2 - d$ over \mathbb{F}_p depends only on $p \mod (4d)$. The function $p \mapsto \left(\frac{d}{p}\right)$ is a homomorphism

$$\chi := \left(rac{d}{\cdot}
ight) : (\mathbb{Z}/4d\mathbb{Z})^{ imes} o \{\pm 1\} \; .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reformulate the problem!

If $d = 2^{\epsilon}q_1 \dots q_r$ then—using the multiplicativity of $\left(\frac{\cdot}{p}\right)$ —

$$\left(\frac{d}{p}\right) = \left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r} \left(\frac{q_i}{p}\right) = (-1)^{\epsilon(p^2-1)/8} \prod_{i=1}^{r} (-1)^{(p-1)(q_i-1)/4} \left(\frac{p}{q_i}\right)$$

Key observation: the decomposition of $x^2 - d$ over \mathbb{F}_p depends only on $p \mod (4d)$. The function $p \mapsto \left(\frac{d}{p}\right)$ is a homomorphism

$$\chi := \left(rac{d}{\cdot}
ight) : (\mathbb{Z}/4d\mathbb{Z})^{ imes} o \{\pm 1\} \; .$$

What did we attach this Dirichlet character to?

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Reformulate the problem!

If $d = 2^{\epsilon}q_1 \dots q_r$ then—using the multiplicativity of $\left(\frac{\cdot}{p}\right)$ —

$$\left(\frac{d}{p}\right) = \left(\frac{2}{p}\right)^{\epsilon} \prod_{i=1}^{r} \left(\frac{q_i}{p}\right) = (-1)^{\epsilon(p^2-1)/8} \prod_{i=1}^{r} (-1)^{(p-1)(q_i-1)/4} \left(\frac{p}{q_i}\right)$$

Key observation: the decomposition of $x^2 - d$ over \mathbb{F}_p depends only on $p \mod (4d)$. The function $p \mapsto \left(\frac{d}{p}\right)$ is a homomorphism

$$\chi := \left(rac{d}{\cdot}
ight) : (\mathbb{Z}/4d\mathbb{Z})^{ imes} o \{\pm 1\} \; .$$

What did we attach this Dirichlet character to?

To a character of the Galois group!

Nontrivial element in G maps a + b√d to a - b√d. Unique nontrivial character: ρ: G → {±1}.

- Put F = Q(√d) = {a + b√d | a, b ∈ Q}. Galois extension of Q with Galois group G := Gal(F/Q) ≅ C₂.
- Nontrivial element in G maps a + b√d to a b√d. Unique nontrivial character: ρ: G → {±1}.

How do we read the decomposition of $f \mod p$ from $Gal(F/\mathbb{Q})$?

- Put F = Q(√d) = {a + b√d | a, b ∈ Q}. Galois extension of Q with Galois group G := Gal(F/Q) ≅ C₂.
- Nontrivial element in G maps a + b√d to a b√d. Unique nontrivial character: ρ: G → {±1}.

How do we read the decomposition of $f \mod p$ from $Gal(F/\mathbb{Q})$?

• To reduce mod p we need integral structure: Let $\mathcal{O}_F = \{\beta \in F : m_\beta(x) \in \mathbb{Z}[x]\}$ be the ring of integers in F.

$$\mathcal{O}_F = \begin{cases} \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4} \\ \{a + b\frac{1+\sqrt{d}}{2} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

- Put F = Q(√d) = {a + b√d | a, b ∈ Q}. Galois extension of Q with Galois group G := Gal(F/Q) ≅ C₂.
- Nontrivial element in G maps a + b√d to a b√d. Unique nontrivial character: ρ: G → {±1}.

How do we read the decomposition of $f \mod p$ from $Gal(F/\mathbb{Q})$?

• To reduce mod p we need integral structure: Let $\mathcal{O}_F = \{\beta \in F : m_\beta(x) \in \mathbb{Z}[x]\}$ be the ring of integers in F.

$$\mathcal{O}_F = \begin{cases} \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4} \\ \{a + b\frac{1+\sqrt{d}}{2} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

 \mathcal{O}_F is a *Dedekind domain*: even though we may not have unique factorization for elements, but we do have unique factorization of ideals (into products of prime ideals)!

- Put F = Q(√d) = {a + b√d | a, b ∈ Q}. Galois extension of Q with Galois group G := Gal(F/Q) ≅ C₂.
- Nontrivial element in G maps a + b√d to a b√d. Unique nontrivial character: ρ: G → {±1}.

How do we read the decomposition of $f \mod p$ from $Gal(F/\mathbb{Q})$?

• To reduce mod p we need integral structure: Let $\mathcal{O}_F = \{\beta \in F : m_\beta(x) \in \mathbb{Z}[x]\}$ be the ring of integers in F.

$$\mathcal{O}_F = \begin{cases} \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4} \\ \{a + b\frac{1+\sqrt{d}}{2} \mid a, b \in \mathbb{Z}\} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

 \mathcal{O}_F is a *Dedekind domain*: even though we may not have unique factorization for elements, but we do have unique factorization of ideals (into products of prime ideals)! Factorization of $p\mathcal{O}_F$ is related to that of $x^2 - d \pmod{p}$:

・ロト・日本・ヨト・ヨト・日・ つへぐ

Key: Decomposing $p\mathcal{O}_F$ is equivalent to finding the prime ideals in $\mathcal{O}_F/p\mathcal{O}_F \cong \mathbb{F}_p[x]/(x^2 - d)$. 3 possiblities (*p* is still odd)

Key: Decomposing $p\mathcal{O}_F$ is equivalent to finding the prime ideals in $\mathcal{O}_F/p\mathcal{O}_F \cong \mathbb{F}_p[x]/(x^2 - d)$. 3 possiblities (*p* is still odd)

- *p* ramifies: $p\mathcal{O}_F = \mathfrak{p}_1^2 \iff p \mid d \iff x^2 d \equiv x^2 \pmod{p};$
- *p* splits: $p = p_1 p_2 \iff \left(\frac{d}{p}\right) = 1 \iff$ $\iff x^2 - d \equiv (x - b)(x - c) \pmod{p};$
- $p\mathcal{O}_F = p\mathcal{O}_F$ remains prime $\iff \left(\frac{d}{p}\right) = -1 \iff x^2 d$ irred. mod p.

Key: Decomposing $p\mathcal{O}_F$ is equivalent to finding the prime ideals in $\mathcal{O}_F/p\mathcal{O}_F \cong \mathbb{F}_p[x]/(x^2 - d)$. 3 possiblities (*p* is still odd)

- *p* ramifies: $p\mathcal{O}_F = \mathfrak{p}_1^2 \iff p \mid d \iff x^2 d \equiv x^2 \pmod{p}$;
- *p* splits: $p = \mathfrak{p}_1 \mathfrak{p}_2 \iff \left(\frac{d}{p}\right) = 1 \iff$ $\iff x^2 - d \equiv (x - b)(x - c) \pmod{p};$
- $p\mathcal{O}_F = p\mathcal{O}_F$ remains prime $\iff \left(\frac{d}{p}\right) = -1 \iff x^2 d$ irred. mod p.

Fact: G acts transitively on the primes of \mathcal{O}_F dividing p. $\mathcal{O}_F/\mathfrak{p}_1 \cong \mathbb{F}_p(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_1} \leq G$ of \mathfrak{p}_1 maps onto $\operatorname{Gal}(\mathbb{F}_p(\sqrt{d})/\mathbb{F}_p) = \langle \operatorname{Frob}_p \rangle$.

Key: Decomposing $p\mathcal{O}_F$ is equivalent to finding the prime ideals in $\mathcal{O}_F/p\mathcal{O}_F \cong \mathbb{F}_p[x]/(x^2 - d)$. 3 possiblities (p is still odd)

- *p* ramifies: $p\mathcal{O}_F = \mathfrak{p}_1^2 \iff p \mid d \iff x^2 d \equiv x^2 \pmod{p};$
- *p* splits: $p = \mathfrak{p}_1 \mathfrak{p}_2 \iff \left(\frac{d}{p}\right) = 1 \iff$ $\iff x^2 - d \equiv (x - b)(x - c) \pmod{p};$
- $p\mathcal{O}_F = p\mathcal{O}_F$ remains prime $\iff \left(\frac{d}{p}\right) = -1 \iff x^2 d$ irred. mod p.

Fact: G acts transitively on the primes of \mathcal{O}_F dividing p. $\mathcal{O}_F/\mathfrak{p}_1 \cong \mathbb{F}_p(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_1} \leq G$ of \mathfrak{p}_1 maps onto $\operatorname{Gal}(\mathbb{F}_p(\sqrt{d})/\mathbb{F}_p) = \langle \operatorname{Frob}_p \rangle$.

Assuming $p \nmid 4d$ we may choose a lift $\widetilde{\mathsf{Frob}}_p \in G$ which is trivial iff $\rho(\widetilde{\mathsf{Frob}}_p) = 1$ iff p splits.

Key: Decomposing $p\mathcal{O}_F$ is equivalent to finding the prime ideals in $\mathcal{O}_F/p\mathcal{O}_F \cong \mathbb{F}_p[x]/(x^2 - d)$. 3 possiblities (*p* is still odd)

• *p* ramifies: $p\mathcal{O}_F = \mathfrak{p}_1^2 \iff p \mid d \iff x^2 - d \equiv x^2 \pmod{p}$;

- *p* splits: $p = \mathfrak{p}_1 \mathfrak{p}_2 \iff \left(\frac{d}{p}\right) = 1 \iff$ $\iff x^2 - d \equiv (x - b)(x - c) \pmod{p};$
- $p\mathcal{O}_F = p\mathcal{O}_F$ remains prime $\iff \left(\frac{d}{p}\right) = -1 \iff x^2 d$ irred. mod p.

Fact: G acts transitively on the primes of \mathcal{O}_F dividing p. $\mathcal{O}_F/\mathfrak{p}_1 \cong \mathbb{F}_p(\sqrt{d})$, so the stabilizer $G_{\mathfrak{p}_1} \leq G$ of \mathfrak{p}_1 maps onto $\operatorname{Gal}(\mathbb{F}_p(\sqrt{d})/\mathbb{F}_p) = \langle \operatorname{Frob}_p \rangle$.

Assuming $p \nmid 4d$ we may choose a lift $\widetilde{\text{Frob}}_p \in G$ which is trivial iff $\rho(\widetilde{\text{Frob}}_p) = 1$ iff p splits.

How does ρ correspond to $\chi = \left(\frac{d}{\cdot}\right) : \left(\mathbb{Z}/4d\mathbb{Z}\right)^{\times} \to \{\pm 1\}$?

G is naturally a quotient group of $(\mathbb{Z}/4d\mathbb{Z})^{\times}!$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G is naturally a quotient group of $(\mathbb{Z}/4d\mathbb{Z})^{\times}!$

• We may write \sqrt{d} as a sum of 4*d*th roots of unity: For $q \neq 2$ and ζ_n primitive *n*th root of 1 prime ($n \ge 1$) we have

$$\sqrt{(-1)^{\frac{q-1}{2}}q} = \sum_{j=0}^{q-1} \zeta_q^{j^2} , \quad \sqrt{2} = \zeta_8 + \zeta_8^7 .$$

G is naturally a quotient group of $(\mathbb{Z}/4d\mathbb{Z})^{\times}!$

• We may write \sqrt{d} as a sum of 4*d*th roots of unity: For $q \neq 2$ and ζ_n primitive *n*th root of 1 prime $(n \ge 1)$ we have

$$\sqrt{(-1)^{\frac{q-1}{2}}q} = \sum_{j=0}^{q-1} \zeta_q^{j^2} , \quad \sqrt{2} = \zeta_8 + \zeta_8^7 .$$

• This shows $\mathbb{Q}(\sqrt{d}) \leq \mathbb{Q}(\zeta_{4d})$ whence $G = \operatorname{Gal}(\mathbb{Q}(\sqrt{d})/\mathbb{Q})$ is a quotient of $\operatorname{Gal}(\mathbb{Q}(\zeta_{4d})/\mathbb{Q}) \cong (\mathbb{Z}/4d\mathbb{Z})^{\times}$:

 $\operatorname{Gal}(\mathbb{Q}(\zeta_{4d})/\mathbb{Q}) \ni g \mapsto k \pmod{4d} \text{ if } g(\zeta_{4d}) = \zeta_{4d}^k \ .$

G is naturally a quotient group of $(\mathbb{Z}/4d\mathbb{Z})^{\times}$!

• We may write \sqrt{d} as a sum of 4*d*th roots of unity: For $q \neq 2$ and ζ_n primitive *n*th root of 1 prime $(n \ge 1)$ we have

$$\sqrt{(-1)^{\frac{q-1}{2}}q} = \sum_{j=0}^{q-1} \zeta_q^{j^2} , \quad \sqrt{2} = \zeta_8 + \zeta_8^7 .$$

• This shows $\mathbb{Q}(\sqrt{d}) \leq \mathbb{Q}(\zeta_{4d})$ whence $G = \text{Gal}(\mathbb{Q}(\sqrt{d})/\mathbb{Q})$ is a quotient of $\text{Gal}(\mathbb{Q}(\zeta_{4d})/\mathbb{Q}) \cong (\mathbb{Z}/4d\mathbb{Z})^{\times}$:

 $\operatorname{Gal}(\mathbb{Q}(\zeta_{4d})/\mathbb{Q}) \ni g \mapsto k \pmod{4d} \text{ if } g(\zeta_{4d}) = \zeta_{4d}^k$.

Theorem (Kronecker–Weber, 19th century)

If F/\mathbb{Q} Galois with abelian Galois group then there exists an integer $n \ge 1$ such that $F \le \mathbb{Q}(\zeta_n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers. Theorem implies $G_{\mathbb{Q}}^{ab} = G_{\mathbb{Q}}/[G_{\mathbb{Q}}, G_{\mathbb{Q}}] = \operatorname{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}).$

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers. Theorem implies $G_{\mathbb{Q}}^{ab} = G_{\mathbb{Q}}/[G_{\mathbb{Q}}, G_{\mathbb{Q}}] = \operatorname{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q})$.

Can we describe this abelian group?

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers. Theorem implies $G_{\mathbb{Q}}^{ab} = G_{\mathbb{Q}}/[G_{\mathbb{Q}}, G_{\mathbb{Q}}] = \operatorname{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}).$

Can we describe this abelian group?

If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ then the Chinese Remainder Theorem yields

$$\mathsf{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})\cong (\mathbb{Z}/n\mathbb{Z})^{ imes}\cong\prod_{i=1}^r \left(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}
ight)^{ imes}$$

Theorem

The maximal abelian extension of \mathbb{Q} is $\mathbb{Q}(\mu_{\infty}) := \bigcup_{n} \mathbb{Q}(\zeta_{n})$.

The absolute Galois group of \mathbb{Q} is the group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of all automorphisms of the field $\overline{\mathbb{Q}}$ of algebraic numbers. Theorem implies $G_{\mathbb{Q}}^{ab} = G_{\mathbb{Q}}/[G_{\mathbb{Q}}, G_{\mathbb{Q}}] = \operatorname{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}).$

Can we describe this abelian group?

If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ then the Chinese Remainder Theorem yields

$$\mathsf{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})\cong (\mathbb{Z}/n\mathbb{Z})^{ imes}\cong\prod_{i=1}^r \left(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}
ight)^{ imes}$$

What does $n \rightarrow \infty$ mean in this context?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The elements of $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ have the form

$$a = a_0 + a_1 p + \dots + a_{\alpha-1} p^{\alpha-1}$$

with $a_i \in \{0, 1, \dots, p-1\}$ for all $0 \le i \le \alpha - 1$. Moreover, *a* lies in $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$, i.e. (a, p) = 1 iff $a_0 \ne 0$.

The elements of $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ have the form

$$a = a_0 + a_1 p + \dots + a_{\alpha-1} p^{\alpha-1}$$

with $a_i \in \{0, 1, \dots, p-1\}$ for all $0 \le i \le \alpha - 1$. Moreover, *a* lies in $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$, i.e. (a, p) = 1 iff $a_0 \ne 0$.

Here $\alpha \to \infty$ means we should consider infinite (formal) sums

$$a=a_0+a_1p+\cdots+a_{lpha-1}p^{lpha-1}+\cdots=\sum_{i=0}^\infty a_ip^i$$
.

These form a ring under usual addition and multiplication—the ring \mathbb{Z}_p of *p*-adic integers. Note that we need to "carry over" when, say, we add 1 and p - 1: it will be $0 + 1 \cdot p + 0 \cdot p^2 + \cdots$.

The elements of $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ have the form

$$a = a_0 + a_1 p + \dots + a_{\alpha-1} p^{\alpha-1}$$

with $a_i \in \{0, 1, \dots, p-1\}$ for all $0 \le i \le \alpha - 1$. Moreover, *a* lies in $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$, i.e. (a, p) = 1 iff $a_0 \ne 0$.

Here $\alpha \rightarrow \infty$ means we should consider infinite (formal) sums

$$a=a_0+a_1p+\cdots+a_{lpha-1}p^{lpha-1}+\cdots=\sum_{i=0}^\infty a_ip^i$$
.

These form a ring under usual addition and multiplication—the ring \mathbb{Z}_p of *p*-adic integers. Note that we need to "carry over" when, say, we add 1 and p - 1: it will be $0 + 1 \cdot p + 0 \cdot p^2 + \cdots$. We can embed \mathbb{Z} into \mathbb{Z}_p , eg. we have

$$-1 = (p-1) + (p-1)p + \dots + (p-1)p^i + \dots$$
 .

 \mathbb{Z}_p is not a field, the invertible elements are those with $a_0 \neq 0$.

The field \mathbb{Q}_p of *p*-adic numbers is defined as the field of fractions of \mathbb{Z}_p —it suffices to invert *p*. The nonzero elements of \mathbb{Q}_p can be written as

$$a=\sum_{i=-N}^{\infty}a_ip^i$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

The field \mathbb{Q}_p of *p*-adic numbers is defined as the field of fractions of \mathbb{Z}_p —it suffices to invert *p*. The nonzero elements of \mathbb{Q}_p can be written as

$$a = \sum_{i=-N}^{\infty} a_i p^i$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$. The maximal abelian Galois group of \mathbb{Q} can be described as

$$G^{ab}_{\mathbb{Q}}\cong\prod_{p \text{ prime}}\mathbb{Z}_p^{ imes}$$
 .

・ロト・日本・ヨト・ヨト・日・ つへぐ

The field \mathbb{Q}_p of *p*-adic numbers is defined as the field of fractions of \mathbb{Z}_p —it suffices to invert *p*. The nonzero elements of \mathbb{Q}_p can be written as

$$a = \sum_{i=-N}^{\infty} a_i p^i$$

with $N \in \mathbb{Z}$ which expansion is unique once we assume $a_{-N} \neq 0$. The maximal abelian Galois group of \mathbb{Q} can be described as

$$\mathcal{G}^{ab}_{\mathbb{Q}}\cong\prod_{p ext{ prime}}\mathbb{Z}_p^ imes ext{ .}$$

Note that any character $\rho\colon G_\mathbb{Q}\to\mathbb{C}^{\times}$ factors through $G_\mathbb{Q}^{ab}$, so we have a correspondence

$$\{\text{characters of } G_{\mathbb{Q}}\} \leftrightarrow \{\text{characters of } \prod_{p \text{ prime}} \mathbb{Z}_p^{\times}\} \ .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: What can we say about polynomials $f(x) \in \mathbb{Z}[x]$ of higher degree? The above picture only sees those with abelian Galois group which is not the case in general!

・ロト・日本・ヨト・ヨト・日・ つへぐ

Problem: What can we say about polynomials $f(x) \in \mathbb{Z}[x]$ of higher degree? The above picture only sees those with abelian Galois group which is not the case in general!

We need to consider higher dimensional representations!

・ロト・日本・ヨト・ヨト・日・ つへぐ

The Galois side

 $\bullet \ \mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C}),$ so we consider group homomorphisms

 $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_n(K)$

The Galois side

 $\bullet \ \mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C}),$ so we consider group homomorphisms

 $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_n(K)$

into the group of invertible $n \times n$ matrices over a field K.

• $G_{\mathbb{Q}}$ is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of $G_{\mathbb{Q}}$. Known (Shafarevich 1970s) to be true for soluble groups.

The Galois side

 $\bullet \ \mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C}),$ so we consider group homomorphisms

 $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_n(K)$

- G_Q is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of G_Q. Known (Shafarevich 1970s) to be true for soluble groups.
- Q is a subfield in Q_p, so we may embed Q
 (non-uniquely) into the algebraic closure Q_p.

The Galois side

 $\bullet \ \mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C}),$ so we consider group homomorphisms

 $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_n(K)$

- G_Q is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of G_Q. Known (Shafarevich 1970s) to be true for soluble groups.
- Q is a subfield in Q_p, so we may embed Q
 (non-uniquely) into the algebraic closure Q_p.
- This yields an embedding G_{Q_p} → G_Q of absolute Galois groups. The "local" Galois groups G_{Q_p} are much easier to understand: for instance, they are soluble!

The Galois side

 $\bullet \ \mathbb{C}^{\times} = \mathrm{GL}_1(\mathbb{C}),$ so we consider group homomorphisms

 $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_n(K)$

- G_Q is a very misterious group: Inverse Galois problem (believed to be true) asks whether all the finite groups arise as a (continuous) quotient of G_Q. Known (Shafarevich 1970s) to be true for soluble groups.
- Q is a subfield in Q_p, so we may embed Q
 (non-uniquely) into the algebraic closure Q_p.
- This yields an embedding $G_{\mathbb{Q}_p} \hookrightarrow G_{\mathbb{Q}}$ of absolute Galois groups. The "local" Galois groups $G_{\mathbb{Q}_p}$ are much easier to understand: for instance, they are soluble!
- We may think of ρ as a bunch of local Galois representations
 ρ_ρ: G_{Q_ρ} → GL_n(K) together with some compatibility
 conditions.

Automorphic side

• Attached to a prime p we have the subgroup

 $\mathbb{Z}_p^{\times} \leq \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $(\mathbb{Z}/\ell^r \mathbb{Z})$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_p^{\times} = \mathbb{Z}_p^{\times} \times p^{\mathbb{Z}}$.

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_p^{\times} \leq \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $(\mathbb{Z}/\ell^r\mathbb{Z})$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_p^{\times} = \mathbb{Z}_p^{\times} \times p^{\mathbb{Z}}$.
- So the natural *n*-dimensional generalizations of this are representations of GL_n(Q_p) on arbitrary vectorspaces.

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_p^{\times} \leq \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $(\mathbb{Z}/\ell^r\mathbb{Z})$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_p^{\times} = \mathbb{Z}_p^{\times} \times p^{\mathbb{Z}}$.
- So the natural *n*-dimensional generalizations of this are representations of GL_n(Q_p) on arbitrary vectorspaces.
- Compatibility conditions for varying primes *p*: "automorphic forms"

Automorphic side

- Attached to a prime p we have the subgroup $\mathbb{Z}_p^{\times} \leq \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$. Note that we also have the class of p in $(\mathbb{Z}/\ell^r\mathbb{Z})$ for all primes $\ell \neq p$. For a character χ of $\prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}^{\times}$ we may glue these two together to obtain a character of $\mathbb{Q}_p^{\times} = \mathbb{Z}_p^{\times} \times p^{\mathbb{Z}}$.
- So the natural *n*-dimensional generalizations of this are representations of GL_n(Q_p) on arbitrary vectorspaces.
- Compatibility conditions for varying primes *p*: "automorphic forms"

Langlands programme: Match these two sides!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

What is known

• *n* = 1

What is known

• *n* = 1

• Classical local Langlands (Harris–Taylor, Henniart): matching *n*-dimensional $G_{\mathbb{Q}_p}$ -representations over \mathbb{Q}_ℓ with representations of $\operatorname{GL}_n(\mathbb{Q}_p)$ over \mathbb{Q}_ℓ ($\ell \neq p$)

What is known

• *n* = 1

- Classical local Langlands (Harris–Taylor, Henniart): matching *n*-dimensional $G_{\mathbb{Q}_p}$ -representations over \mathbb{Q}_ℓ with representations of $\mathrm{GL}_n(\mathbb{Q}_p)$ over \mathbb{Q}_ℓ ($\ell \neq p$)
- Elliptic curves: E: y² = x³ + ax + b → Galois representation: E[ℓ^r] ≃ ℤ/ℓ^rℤ ⊕ ℤ/ℓ^rℤ. G_Q acts on this, so we obtain a representation ρ_{E,ℓ^r} into GL₂(ℤ/ℓ^rℤ).

Theorem (Wiles, Taylor–Wiles, 1994)

Elliptic curves are modular.

This lead to a proof of Fermat's Last Theorem!

What is known

• *n* = 1

- Classical local Langlands (Harris–Taylor, Henniart): matching *n*-dimensional $G_{\mathbb{Q}_p}$ -representations over \mathbb{Q}_ℓ with representations of $\mathrm{GL}_n(\mathbb{Q}_p)$ over \mathbb{Q}_ℓ ($\ell \neq p$)
- Elliptic curves: E: y² = x³ + ax + b → Galois representation: E[ℓ^r] ≃ ℤ/ℓ^rℤ ⊕ ℤ/ℓ^rℤ. G_Q acts on this, so we obtain a representation ρ_{E,ℓ^r} into GL₂(ℤ/ℓ^rℤ).

Theorem (Wiles, Taylor–Wiles, 1994)

Elliptic curves are modular.

This lead to a proof of Fermat's Last Theorem!

 n = 2 is almost settled (Berger, Breuil, Colmez, Emerton, Kisin, Paškunas) globally—this needed a stronger local Langlands allowing ℓ = p proven for n = 2 by Colmez

(ロ)、

Easier to explain the mod p situation (representations over \mathbb{F}_p on both sides)—closely related to p-adic representations.

Easier to explain the mod p situation (representations over \mathbb{F}_p on both sides)—closely related to p-adic representations.

• *n* = 2: Settled by Colmez+others (as above): Colmez constructed a functor

 $\mathbb{V}: \{ \operatorname{GL}_2(\mathbb{Q}_p) - \text{representations } / \mathbb{F}_p \} \rightarrow \{ G_{\mathbb{Q}_p} - \text{representations } / \mathbb{F}_p \}$

that is "compatible" with the global picture

• *n* = 2: Settled by Colmez+others (as above): Colmez constructed a functor

 $\mathbb{V} \colon \{ \mathrm{GL}_2(\mathbb{Q}_p) - \text{representations } / \mathbb{F}_p \} \to \{ G_{\mathbb{Q}_p} - \text{representations } / \mathbb{F}_p \}$

that is "compatible" with the global picture

 Various attempts to generalize this to n > 2 (Breuil, Große-Klönne, Schneider–Vigneras, Z)—constructions of functors

Easier to explain the mod p situation (representations over \mathbb{F}_p on both sides)—closely related to p-adic representations.

• *n* = 2: Settled by Colmez+others (as above): Colmez constructed a functor

 $\mathbb{V}: \{ \operatorname{GL}_2(\mathbb{Q}_p) - \text{representations } / \mathbb{F}_p \} \rightarrow \{ G_{\mathbb{Q}_p} - \text{representations } / \mathbb{F}_p \}$

that is "compatible" with the global picture

- Various attempts to generalize this to n > 2 (Breuil, Große-Klönne, Schneider–Vigneras, Z)—constructions of functors
- Z: functor \mathbb{V}_{Δ} to representations of $\underbrace{\mathcal{G}_{\mathbb{Q}_{p}} \times \cdots \times \mathcal{G}_{\mathbb{Q}_{p}}}_{\mathcal{Q}_{p}} \times \mathbb{Q}_{p}^{\times}$

with many nice properties

Conjecture (Z, building on Breuil–Herzig–Schraen) To an automorphic representation Π_p the functor \mathbb{V}_{Δ} attaches $\bigotimes_{i=1}^{n} \wedge^i \rho_p$ where $\rho_p \leftrightarrow \Pi_p$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Thanks for your attention!